Результаты исследований группы Инженеры в проекте Вычисляем рассуждения: различия между версиями

Материал из Wiki Mininuniver
Перейти к навигацииПерейти к поиску
 
(не показано 19 промежуточных версий 2 участников)
Строка 1: Строка 1:
 +
{| cellpadding="10" cellspacing="5" style="width: 100%; background-color: black; margin-left: auto; margin-right: auto"
 +
| style="background-color:white; border: 5px solid white; -moz-border-radius-topleft: 8px; -moz-border-radius-bottomleft: 8px; -moz-border-radius-topright: 8px; -moz-border-radius-bottomright: 8px; height: 60px;" colspan="2" |
 +
 
==Название проекта==
 
==Название проекта==
 
[[Учебный проект Вычисляем рассуждения]]
 
[[Учебный проект Вычисляем рассуждения]]
  
 
==Авторы и участники проекта==
 
==Авторы и участники проекта==
#[[Участник:Плеханов Семён|Плеханов Семён Петрович]]
+
#[[Участник:Плеханов Семён|Плеханов Семён Петрович]]: Координатор группы - создание карты знаний и таблиц, редакт вики страницы, создание гугл групы
#[[Участник: Андрей Лабзин|Лабзин Андрей Федорович]]
+
#[[Участник:Андрей Лабзин|Лабзин Андрей Федорович]]: Редактирование информации и вики страницы, создание страницы БобрДобр, работа над программами  и их текстом.
#[[Участник:Гришин Евгений|Гришин Евгений Анатольевич]]
+
#[[Участник:Гришин Евгений|Гришин Евгений Анатольевич]]: Работа над программами и их текстом, создание бета версии карты знаний, поиск информации
#[[Участник:Кислицкий Илья|Кислицкий Илья Станиславович]]
+
#[[Участник:Кислицкий Илья|Кислицкий Илья Станиславович]]: Поиск информации.
#[[Участник:Комаров Иван|Комаров Иван Александрович]]
+
#[[Участник:Комаров Иван|Комаров Иван Александрович]]: Обработка информации.
 
==Тема исследования группы==
 
==Тема исследования группы==
Как аппарат математической логики применяется в современной электронно-вычислительной технике?
+
Приложения математической логики в современной электронно-вычислительной технике.
  
 
==Поставленные задачи==
 
==Поставленные задачи==
Строка 25: Строка 28:
 
== Проблемный вопрос (вопрос для исследования)==
 
== Проблемный вопрос (вопрос для исследования)==
  
Как происходит взаимодействие логической части программы с её физической начинкой.
+
Как аппарат математической логики применяется в современной электронно-вычислительной технике?
  
 
== Гипотеза исследования ==
 
== Гипотеза исследования ==
Проанализировать возможности языка
+
Мы предполагаем, что математическая логика<br>
математической логики в современной электронно-вычислительной технике.<br>
+
имеет достаточно широкое применение в современной электронно-вычислительной технике(Логические элементы).
Как используются в технике :<br>
 
*Полусумматор.<br>
 
*Сумматор.<br>
 
*Триггер.<br>
 
  
 
==Цели исследования==
 
==Цели исследования==
 +
 
Провести анализ возможностей использования языка
 
Провести анализ возможностей использования языка
 
математической логики в современной электронно-вычислительной технике.
 
математической логики в современной электронно-вычислительной технике.
  
 
==Результаты исследования==
 
==Результаты исследования==
'''Полусумматор''' — логическая схема имеющая два входа и два выхода (двухразрядный сумматор, бинарный сумматор). Полусумматор используется для построения двоичных сумматоров. Полусумматор позволяет вычислять сумму A+B, где A и B — это разряды двоичного числа, при этом результатом будут два бита S,C, где S — это бит суммы по модулю, а C — бит переноса.
 
  
'''Сумматор''' — логический операционный узел, выполняющий арифметическое сложение двоичных, троичных или n-ичных кодов двух (бинарный), трёх (тринарный) или n чисел (n-нарный). При арифметическом сложении выполняются и другие дополнительные операции: учёт знаков чисел, выравнивание порядков слагаемых и тому подобное.
+
Нами была создана [http://groups.google.ru/group/IST-10 Google группа]
 +
 
 +
Был произведён подбор ссылок на сервисе [http://bobrdobr.ru/people/cl0Ne/ ДоброгоБобра]
 +
 
 +
'''Мы ознакомились с основными понятиями математической и нечеткой логики.'''
 +
 
 +
[http://ru.wikipedia.org/wiki/Математическая_логика Математическая логика] (или символическая логика) - область знания, которая сложилась в результате применения в логике формальных методов математики и логического исследования математических рассуждений и доказательств. В математической логике логические процессы изучаются посредством их отображения в формализованных языках, или логических исчислениях. Наряду с изучением формального строения логических исчислений (Логический синтаксис) в математической логике встает также задача рассмотрения отношений между исчислениями и теми содержательными областями, которые служат их интерпретациями и моделями. Эта задача обрисовывает проблематику логической семантики. Логический синтаксис и семантика включаются в металогику - теорию средств описания, предпосылок и свойств логических исчислений. Некоторые исходные понятия математической логике содержатся уже в учении мегаро-стоической школы (3 в. до н. э.). Саму же идею логического исчисления, по-видимому, впервые сформулировал Лейбниц. Однако как самостоятельная дисциплина математическая логика оформилась в середине 19 в. благодаря работам Буля. С Буля начинается развитие так называемой алгебры логики. Другое направление разработки математической логики ставшее определяющим, начинается с конца 19 века в связи с потребностями математики в обосновании своих понятий и способов доказательств. У истоков этого направления лежат труды Фреге. Значительный вклад в его развитие внесли Рассел, Уайтхед и Гильберт. В этот период создаются фундаментальные логические системы математической логики - классические исчисление высказываний и исчисление предикатов. Крупные результаты, определившие современное состояние математической логики, были получены в. 30-х гг. Гёделем. Тарским, А. Чёрчем. Современный этап математической логики характеризуется исследованием разнообразных видов логических исчислений, интересом к проблемам семантики и вообще металогики, к вопросам специальных математических и технических приложений логики. В связи с задачами обоснования математики наряду с работами в области классической математической логике разрабатывается интуиционистская и конструктивная логика. С анализом оснований логики связаны исследования по комбинаторной логике. Ведутся исследования в области многозначных, модальных и релевантных логик. Математическая логика оказала влияние на развитие ряда разделов современной математики, общей алгебры, теории алгоритмов, рекурсивных функций, формальных систем. Математическая логика находит приложение в электротехнике (исследование релейно-контактных и электронных схем), вычислительной технике (программирование), кибернетике (теория автоматов), нейрофизиологии (моделирование нейронных сетей), языкознании (структурная лингвистика и семиотика).
 +
 
 +
Еще мы нашли информацию по нечеткой логике(Fuzzy logic):
 +
 
 +
[http://http://ru.wikipedia.org/wiki/Fuzzy_Logic Нечеткая логика] и теория нечётких множеств — раздел математики, являющийся обобщением классической логики и теории множеств. Понятие нечёткой логики было впервые введено профессором Лютфи Заде в 1965 году. В этой статье понятие множества было расширено допущением, что функция принадлежности элемента к множеству может принимать любые значения в интервале [0...1], а не только 0 или 1. Такие множества были названы нечёткими. Также автором были предложены различные логические операции над нечёткими множествами и предложено понятие лингвистической переменной, в качестве значений которой выступают нечёткие множества.
 +
 
 +
<center>'''Нами была создана карта знаний по основным логическим элементам'''</center>
  
'''Триггер''' — класс электронных устройств, обладающих способностью длительно находиться в одном из двух или более устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознаётся по значению выходного напряжения. По характеру действия триггеры относятся к импульсным устройствам — их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время.
+
<center>[[Изображение:Screenshot-2.jpg|1200px|Карта знаний по основным логическим операциям]]</center>
  
 +
<center>
 +
'''Таблицы истинности'''
 +
<gallery>
 +
Изображение:Screenshot-3.jpg|КОНЪЮНКЦИЯ (логическое умножение)
 +
Изображение:Screenshot-4.jpg|ДИЗЪЮНКЦИЯ (логическое сложение)
 +
Изображение:Screenshot-5.jpg|ИМПЛИКАЦИЯ (логическое следование)
 +
Изображение:Screenshot-6.jpg|ИНВЕРСИЯ  (отрицание)
 +
Изображение:Screenshot-7.jpg|ЭКВИВАЛЕНЦИЯ (равнозначность)
 +
</gallery>
 +
</center>
 +
 +
'''[http://ru.wikipedia.org/wiki/Полусумматор Полусумматор]'''— логическая схема имеющая два входа и два выхода (двухразрядный сумматор, бинарный сумматор). Полусумматор используется для построения двоичных сумматоров. Полусумматор позволяет вычислять сумму A+B, где A и B — это разряды двоичного числа, при этом результатом будут два бита S,C, где S — это бит суммы по модулю, а C — бит переноса.
 +
 +
'''[http://ru.wikipedia.org/wiki/Сумматор Сумматор]''' — логический операционный узел, выполняющий арифметическое сложение двоичных, троичных или n-ичных кодов двух (бинарный), трёх (тринарный) или n чисел (n-нарный). При арифметическом сложении выполняются и другие дополнительные операции: учёт знаков чисел, выравнивание порядков слагаемых и тому подобное.
 +
 +
'''[http://ru.wikipedia.org/wiki/Триггер Триггер]''' — класс электронных устройств, обладающих способностью длительно находиться в одном из двух или более устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознаётся по значению выходного напряжения. По характеру действия триггеры относятся к импульсным устройствам — их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время.
 +
 +
<center>'''Примеры релейно-контактных схем'''</center>
 +
<center>
 +
<gallery>
 +
Изображение:Исключающие ИЛИ.jpg|2И
 +
Изображение:НЕ.jpg|НЕ
 +
Изображение:2И-НЕ.jpg|2И-НЕ
 +
Изображение:2ИЛИ-НЕ.jpg|2ИЛИ-НЕ
 +
Изображение:2И.jpg|2И
 +
Изображение:2ИЛИ.jpg|2ИЛИ
 +
Изображение:2И.jpg|2И
 +
</gallery>
 +
</center>
 +
 +
<center>'''Нами были созданы программы по основным логическим элементам в электронно-вычислительной технике на языке Delphi'''</center>
  
 
{|  
 
{|  
!<big>Описание элементов</big>
 
 
!<big>Полусумматор</big>
 
!<big>Полусумматор</big>
 
!<big>Полный сумматор</big>
 
!<big>Полный сумматор</big>
!<big>Тригер</big>
+
!<big>Триггер</big>
 
|-
 
|-
|Программа в Delfi
+
|[[Изображение:Полусумматор.JPG|center|200px]]
|[[Изображение:Полусумматор.JPG|200px]]
+
|[[Изображение:Полный сумматор.JPG|center|300px]]
|[[Изображение:Полный сумматор.JPG|300px]]
+
|[[Изображение:Триггер.JPG|center|315px]]
|[[Изображение:Триггер.JPG|315px]]
 
 
|-
 
|-
|Текст программы в Delfi
 
 
|var x,y,Pi,P,S:Boolean;
 
|var x,y,Pi,P,S:Boolean;
  
Строка 71: Строка 110:
 
Pi:=strtobool(edit7.text);
 
Pi:=strtobool(edit7.text);
  
P:=(not x and y and Pi)or(x and not y and Pi)or(x and y and not Pi)or(x and y and Pi);
+
P:=(not x and y and Pi)or(x and not y and Pi)
 +
 
 +
or(x and y and not Pi)or(x and y and Pi);
  
S:=(not x and not y and Pi)or(not x and y and not Pi)or(x and not y and not Pi)or(x and y and Pi);
+
S:=(not x and not y and Pi)or(not x and y and not Pi)
 +
 
 +
or(x and not y and not Pi)or(x and y and Pi);
  
 
edit8.text:=booltostr(S,true);
 
edit8.text:=booltostr(S,true);
Строка 92: Строка 135:
 
y:=strtobool(edit6.Text);
 
y:=strtobool(edit6.Text);
  
p:=strtobool(edit7.Text);
+
P:=strtobool(edit7.Text);
  
s:=(not x and not y and p) or (not x and y and not p) or (x and not y and not p) or (x and y and p);
+
S:=(not x and not y and p) or (not x and y and not p)
  
pi:=(not x and y and p) or (x and not y and p) or(x and y and not p) or(x and y and p);
+
or(x and not y and not p) or (x and y and p);
 +
 
 +
Pi:=(not x and y and p) or (x and not y and p)  
 +
 
 +
or(x and y and not p) or(x and y and p);
  
 
edit8.text:=booltostr(s,true);
 
edit8.text:=booltostr(s,true);
Строка 137: Строка 184:
  
 
==Вывод==
 
==Вывод==
 
+
В ходе проектной деятельности мы выяснили роль логических элементов в вычислительной технике. Для классификации логических элементов нами построен кластер. Выполнено моделирование на языке Delphi триггера, полу сумматора и сумматора. Выполнен подбор ссылок по теме проекта, создана карта знаний демонстрирующая основные логические элементы.
  
 
==Полезные ресурсы==
 
==Полезные ресурсы==
[http://ru.wikipedia.org/wiki/Математическая_логика Математическая логика]
 
  
 
[http://ru.wikipedia.org/wiki/Сетунь_(компьютер) Сетунь(компьютер)]
 
[http://ru.wikipedia.org/wiki/Сетунь_(компьютер) Сетунь(компьютер)]
Строка 148: Строка 194:
 
[http://inf1.info/logic Алгебра логики и логические основы компьютера]
 
[http://inf1.info/logic Алгебра логики и логические основы компьютера]
  
[http://ru.wikipedia.org/wiki/Полусумматор Полусумматор]
+
[http://http://www.ref.by/refs/49/10030/1.html Структура нечеткой логики]
 
 
[http://ru.wikipedia.org/wiki/Сумматор Сумматор]
 
 
 
[http://ru.wikipedia.org/wiki/Триггер Триггер]
 
 
 
  
== Другие документы ==
+
'''Методическое пособие по информатике Круподёровой Елены Петровны'''
  
 
[[Категория:Проекты]]
 
[[Категория:Проекты]]

Текущая версия на 12:58, 26 октября 2010

Название проекта

Учебный проект Вычисляем рассуждения

Авторы и участники проекта

  1. Плеханов Семён Петрович: Координатор группы - создание карты знаний и таблиц, редакт вики страницы, создание гугл групы
  2. Лабзин Андрей Федорович: Редактирование информации и вики страницы, создание страницы БобрДобр, работа над программами и их текстом.
  3. Гришин Евгений Анатольевич: Работа над программами и их текстом, создание бета версии карты знаний, поиск информации
  4. Кислицкий Илья Станиславович: Поиск информации.
  5. Комаров Иван Александрович: Обработка информации.

Тема исследования группы

Приложения математической логики в современной электронно-вычислительной технике.

Поставленные задачи

1) Создать группу <<Инженеры>> на Google для организации взаимодействия в ходе исследовательской работы.
2) Осуществить совместный подбор ссылок на Интернет-ресурсы и поиск информации в печатных изданиях по теме исследования.
3) Провести анализ полученной информации по теме исследования и ответить на вопросы:
а) как язык классической математической логики находит применение при построении релейно-контактных схем?
б) что такое нечеткая логика и в каких областях она применяется?
4) Сформулировать выводы по результатам исследования.
5) Оформить результаты исследования.

Проблемный вопрос (вопрос для исследования)

Как аппарат математической логики применяется в современной электронно-вычислительной технике?

Гипотеза исследования

Мы предполагаем, что математическая логика
имеет достаточно широкое применение в современной электронно-вычислительной технике(Логические элементы).

Цели исследования

Провести анализ возможностей использования языка математической логики в современной электронно-вычислительной технике.

Результаты исследования

Нами была создана Google группа

Был произведён подбор ссылок на сервисе ДоброгоБобра

Мы ознакомились с основными понятиями математической и нечеткой логики.

Математическая логика (или символическая логика) - область знания, которая сложилась в результате применения в логике формальных методов математики и логического исследования математических рассуждений и доказательств. В математической логике логические процессы изучаются посредством их отображения в формализованных языках, или логических исчислениях. Наряду с изучением формального строения логических исчислений (Логический синтаксис) в математической логике встает также задача рассмотрения отношений между исчислениями и теми содержательными областями, которые служат их интерпретациями и моделями. Эта задача обрисовывает проблематику логической семантики. Логический синтаксис и семантика включаются в металогику - теорию средств описания, предпосылок и свойств логических исчислений. Некоторые исходные понятия математической логике содержатся уже в учении мегаро-стоической школы (3 в. до н. э.). Саму же идею логического исчисления, по-видимому, впервые сформулировал Лейбниц. Однако как самостоятельная дисциплина математическая логика оформилась в середине 19 в. благодаря работам Буля. С Буля начинается развитие так называемой алгебры логики. Другое направление разработки математической логики ставшее определяющим, начинается с конца 19 века в связи с потребностями математики в обосновании своих понятий и способов доказательств. У истоков этого направления лежат труды Фреге. Значительный вклад в его развитие внесли Рассел, Уайтхед и Гильберт. В этот период создаются фундаментальные логические системы математической логики - классические исчисление высказываний и исчисление предикатов. Крупные результаты, определившие современное состояние математической логики, были получены в. 30-х гг. Гёделем. Тарским, А. Чёрчем. Современный этап математической логики характеризуется исследованием разнообразных видов логических исчислений, интересом к проблемам семантики и вообще металогики, к вопросам специальных математических и технических приложений логики. В связи с задачами обоснования математики наряду с работами в области классической математической логике разрабатывается интуиционистская и конструктивная логика. С анализом оснований логики связаны исследования по комбинаторной логике. Ведутся исследования в области многозначных, модальных и релевантных логик. Математическая логика оказала влияние на развитие ряда разделов современной математики, общей алгебры, теории алгоритмов, рекурсивных функций, формальных систем. Математическая логика находит приложение в электротехнике (исследование релейно-контактных и электронных схем), вычислительной технике (программирование), кибернетике (теория автоматов), нейрофизиологии (моделирование нейронных сетей), языкознании (структурная лингвистика и семиотика).

Еще мы нашли информацию по нечеткой логике(Fuzzy logic):

Нечеткая логика и теория нечётких множеств — раздел математики, являющийся обобщением классической логики и теории множеств. Понятие нечёткой логики было впервые введено профессором Лютфи Заде в 1965 году. В этой статье понятие множества было расширено допущением, что функция принадлежности элемента к множеству может принимать любые значения в интервале [0...1], а не только 0 или 1. Такие множества были названы нечёткими. Также автором были предложены различные логические операции над нечёткими множествами и предложено понятие лингвистической переменной, в качестве значений которой выступают нечёткие множества.

Нами была создана карта знаний по основным логическим элементам
Карта знаний по основным логическим операциям

Таблицы истинности

Полусумматор— логическая схема имеющая два входа и два выхода (двухразрядный сумматор, бинарный сумматор). Полусумматор используется для построения двоичных сумматоров. Полусумматор позволяет вычислять сумму A+B, где A и B — это разряды двоичного числа, при этом результатом будут два бита S,C, где S — это бит суммы по модулю, а C — бит переноса.

Сумматор — логический операционный узел, выполняющий арифметическое сложение двоичных, троичных или n-ичных кодов двух (бинарный), трёх (тринарный) или n чисел (n-нарный). При арифметическом сложении выполняются и другие дополнительные операции: учёт знаков чисел, выравнивание порядков слагаемых и тому подобное.

Триггер — класс электронных устройств, обладающих способностью длительно находиться в одном из двух или более устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознаётся по значению выходного напряжения. По характеру действия триггеры относятся к импульсным устройствам — их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время.

Примеры релейно-контактных схем
Нами были созданы программы по основным логическим элементам в электронно-вычислительной технике на языке Delphi
Полусумматор Полный сумматор Триггер
Полусумматор.JPG
Полный сумматор.JPG
Триггер.JPG
var x,y,Pi,P,S:Boolean;

procedure TForm1.Button1Click(Sender: TObject);

begin

x:=strtobool(edit5.text);

y:=strtobool(edit6.text);

Pi:=strtobool(edit7.text);

P:=(not x and y and Pi)or(x and not y and Pi)

or(x and y and not Pi)or(x and y and Pi);

S:=(not x and not y and Pi)or(not x and y and not Pi)

or(x and not y and not Pi)or(x and y and Pi);

edit8.text:=booltostr(S,true);

edit9.text:=booltostr(P,true);

end;

end.

var x,y,s,p,pi :boolean;

procedure TForm1.Button1Click(Sender: TObject);

begin

x:=strtobool(edit5.Text);

y:=strtobool(edit6.Text);

P:=strtobool(edit7.Text);

S:=(not x and not y and p) or (not x and y and not p)

or(x and not y and not p) or (x and y and p);

Pi:=(not x and y and p) or (x and not y and p)

or(x and y and not p) or(x and y and p);

edit8.text:=booltostr(s,true);

edit9.text:=booltostr(pi,true);

end;

end.

var S,R,Or1Out,Not1out,or2out,not2out:boolean

procedure TForm2.Button1Click(Sender: TObject);

begin

S:=StrToBool(editset.text);

R:=StrToBool(editreset.text);

or1out:=s or not2out;

not1out:=not or1out;

or2out:=not1 out or r;

not2out:=bot or2out;

editor1out.text:=booltostr(or1out,true);

editor2out.text:=booltostr(or2out,true);

editq2.text:=booltostr(not1out,true);

editq1.text:=booltostr(not2out,true);

end;

end.

Вывод

В ходе проектной деятельности мы выяснили роль логических элементов в вычислительной технике. Для классификации логических элементов нами построен кластер. Выполнено моделирование на языке Delphi триггера, полу сумматора и сумматора. Выполнен подбор ссылок по теме проекта, создана карта знаний демонстрирующая основные логические элементы.

Полезные ресурсы

Сетунь(компьютер)

Логика в информатике

Алгебра логики и логические основы компьютера

Структура нечеткой логики

Методическое пособие по информатике Круподёровой Елены Петровны