Результаты исследований группы Инженеры в проекте Вычисляем рассуждения: различия между версиями

Материал из Wiki Mininuniver
Перейти к навигацииПерейти к поиску
 
(не показаны 22 промежуточные версии 3 участников)
Строка 1: Строка 1:
 +
{| cellpadding="10" cellspacing="5" style="width: 100%; background-color: black; margin-left: auto; margin-right: auto"
 +
| style="background-color:white; border: 5px solid white; -moz-border-radius-topleft: 8px; -moz-border-radius-bottomleft: 8px; -moz-border-radius-topright: 8px; -moz-border-radius-bottomright: 8px; height: 60px;" colspan="2" |
 +
 
==Название проекта==
 
==Название проекта==
 
[[Учебный проект Вычисляем рассуждения]]
 
[[Учебный проект Вычисляем рассуждения]]
  
 
==Авторы и участники проекта==
 
==Авторы и участники проекта==
#[[Участник:Плеханов Семён|Плеханов Семён Петрович]]
+
#[[Участник:Плеханов Семён|Плеханов Семён Петрович]]: Координатор группы - создание карты знаний и таблиц, редакт вики страницы, создание гугл групы
#[[Участник: Андрей Лабзин|Лабзин Андрей Федорович]]
+
#[[Участник:Андрей Лабзин|Лабзин Андрей Федорович]]: Редактирование информации и вики страницы, создание страницы БобрДобр, работа над программами  и их текстом.
#[[Участник:Гришин Евгений|Гришин Евгений Анатольевич]]
+
#[[Участник:Гришин Евгений|Гришин Евгений Анатольевич]]: Работа над программами и их текстом, создание бета версии карты знаний, поиск информации
#[[Участник:Кислицкий Илья|Кислицкий Илья Станиславович]]
+
#[[Участник:Кислицкий Илья|Кислицкий Илья Станиславович]]: Поиск информации.
#[[Участник:Комаров Иван|Комаров Иван]]
+
#[[Участник:Комаров Иван|Комаров Иван Александрович]]: Обработка информации.
 
==Тема исследования группы==
 
==Тема исследования группы==
Как аппарат математической логики применяется в современной электронно-вычислительной технике?
+
Приложения математической логики в современной электронно-вычислительной технике.
  
 
==Поставленные задачи==
 
==Поставленные задачи==
Строка 25: Строка 28:
 
== Проблемный вопрос (вопрос для исследования)==
 
== Проблемный вопрос (вопрос для исследования)==
  
Как происходит взаимодействие логической части программы с её физической начинкой.
+
Как аппарат математической логики применяется в современной электронно-вычислительной технике?
  
 
== Гипотеза исследования ==
 
== Гипотеза исследования ==
Проанализировать возможности языка
+
Мы предполагаем, что математическая логика<br>
математической логики в современной электронно-вычислительной технике.<br>
+
имеет достаточно широкое применение в современной электронно-вычислительной технике(Логические элементы).
Как используются в технике :<br>
 
*Полусумматор.<br>
 
*Сумматор.<br>
 
*Триггер.<br>
 
  
 
==Цели исследования==
 
==Цели исследования==
 +
 
Провести анализ возможностей использования языка
 
Провести анализ возможностей использования языка
 
математической логики в современной электронно-вычислительной технике.
 
математической логики в современной электронно-вычислительной технике.
  
 
==Результаты исследования==
 
==Результаты исследования==
Применение в логике математических методов становится возможным тогда, когда суждения формулируются на некотором точном языке. Такие точные языки имеют две стороны: синтаксис и семантику. Синтаксисом называется совокупность правил построения объектов языка (обычно называемых формулами). Семантикой называется совокупность соглашений, описывающих наше понимание формул (или некоторых из них) и позволяющих считать одни формулы верными, а другие — нет.<br>
 
Важную роль в математической логике играют понятия дедуктивной теории и исчисления. Исчислением называется совокупность правил вывода, позволяющих считать некоторые формулы выводимыми. Правила вывода подразделяются на два класса. Одни из них непосредственно квалифицируют некоторые формулы как выводимые. Такие правила вывода принято называть аксиомами. Другие же позволяют считать выводимыми формулы A, синтаксически связанные некоторым заранее определённым способом с конечными наборами A1,....An  выводимых формул. Широко применяемым правилом второго типа является правило modus ponens: если выводимы формулы A и (А->B), то выводима и формула B.<br>
 
Отношение исчислений к семантике выражается понятиями семантической пригодности и семантической полноты исчисления. Исчисление И называется семантически пригодным для языка Я, если любая выводимая в И формула языка Я является верной. Аналогично, исчисление И называется семантически полным в языке Я, если любая верная формула языка Я выводима в И.Математическая логика изучает логические связи и отношения лежащие в основе логического ( дедуктивного ) вывода с использованием языка математики.<br>
 
Многие из рассматриваемых в математической логике языков обладают семантически полными и семантически пригодными исчислениями. В частности, известен результат К. Гёделя о том, что так называемое классическое исчисление предикатов является семантически полным и семантически пригодным для языка классической логики предикатов первого порядка. С другой стороны, имеется немало языков, для которых построение семантически полного и семантически пригодного исчисления невозможно. В этой области классическим результатом является теорема Гёделя о неполноте, утверждающая невозможность семантически полного и семантически пригодного исчисления для языка формальной арифметики.<br>
 
Стоит отметить, что на практике множество элементарных логических операций является обязательной частью набора инструкций всех современных микропроцессоров и соответственно входит в языки программирования. Это является одним из важнейших практических приложений методов математической логики, изучаемых в современных учебниках информатики.
 
  
 +
Нами была создана [http://groups.google.ru/group/IST-10 Google группа]
 +
 +
Был произведён подбор ссылок на сервисе [http://bobrdobr.ru/people/cl0Ne/ ДоброгоБобра]
 +
 +
'''Мы ознакомились с основными понятиями математической и нечеткой логики.'''
 +
 +
[http://ru.wikipedia.org/wiki/Математическая_логика Математическая логика] (или символическая логика) - область знания, которая сложилась в результате применения в логике формальных методов математики и логического исследования математических рассуждений и доказательств. В математической логике логические процессы изучаются посредством их отображения в формализованных языках, или логических исчислениях. Наряду с изучением формального строения логических исчислений (Логический синтаксис) в математической логике встает также задача рассмотрения отношений между исчислениями и теми содержательными областями, которые служат их интерпретациями и моделями. Эта задача обрисовывает проблематику логической семантики. Логический синтаксис и семантика включаются в металогику - теорию средств описания, предпосылок и свойств логических исчислений. Некоторые исходные понятия математической логике содержатся уже в учении мегаро-стоической школы (3 в. до н. э.). Саму же идею логического исчисления, по-видимому, впервые сформулировал Лейбниц. Однако как самостоятельная дисциплина математическая логика оформилась в середине 19 в. благодаря работам Буля. С Буля начинается развитие так называемой алгебры логики. Другое направление разработки математической логики ставшее определяющим, начинается с конца 19 века в связи с потребностями математики в обосновании своих понятий и способов доказательств. У истоков этого направления лежат труды Фреге. Значительный вклад в его развитие внесли Рассел, Уайтхед и Гильберт. В этот период создаются фундаментальные логические системы математической логики - классические исчисление высказываний и исчисление предикатов. Крупные результаты, определившие современное состояние математической логики, были получены в. 30-х гг. Гёделем. Тарским, А. Чёрчем. Современный этап математической логики характеризуется исследованием разнообразных видов логических исчислений, интересом к проблемам семантики и вообще металогики, к вопросам специальных математических и технических приложений логики. В связи с задачами обоснования математики наряду с работами в области классической математической логике разрабатывается интуиционистская и конструктивная логика. С анализом оснований логики связаны исследования по комбинаторной логике. Ведутся исследования в области многозначных, модальных и релевантных логик. Математическая логика оказала влияние на развитие ряда разделов современной математики, общей алгебры, теории алгоритмов, рекурсивных функций, формальных систем. Математическая логика находит приложение в электротехнике (исследование релейно-контактных и электронных схем), вычислительной технике (программирование), кибернетике (теория автоматов), нейрофизиологии (моделирование нейронных сетей), языкознании (структурная лингвистика и семиотика).
 +
 +
Еще мы нашли информацию по нечеткой логике(Fuzzy logic):
 +
 +
[http://http://ru.wikipedia.org/wiki/Fuzzy_Logic Нечеткая логика] и теория нечётких множеств — раздел математики, являющийся обобщением классической логики и теории множеств. Понятие нечёткой логики было впервые введено профессором Лютфи Заде в 1965 году. В этой статье понятие множества было расширено допущением, что функция принадлежности элемента к множеству может принимать любые значения в интервале [0...1], а не только 0 или 1. Такие множества были названы нечёткими. Также автором были предложены различные логические операции над нечёткими множествами и предложено понятие лингвистической переменной, в качестве значений которой выступают нечёткие множества.
 +
 +
<center>'''Нами была создана карта знаний по основным логическим элементам'''</center>
 +
 +
<center>[[Изображение:Screenshot-2.jpg|1200px|Карта знаний по основным логическим операциям]]</center>
 +
 +
<center>
 +
'''Таблицы истинности'''
 +
<gallery>
 +
Изображение:Screenshot-3.jpg|КОНЪЮНКЦИЯ (логическое умножение)
 +
Изображение:Screenshot-4.jpg|ДИЗЪЮНКЦИЯ (логическое сложение)
 +
Изображение:Screenshot-5.jpg|ИМПЛИКАЦИЯ (логическое следование)
 +
Изображение:Screenshot-6.jpg|ИНВЕРСИЯ  (отрицание)
 +
Изображение:Screenshot-7.jpg|ЭКВИВАЛЕНЦИЯ (равнозначность)
 +
</gallery>
 +
</center>
 +
 +
'''[http://ru.wikipedia.org/wiki/Полусумматор Полусумматор]'''— логическая схема имеющая два входа и два выхода (двухразрядный сумматор, бинарный сумматор). Полусумматор используется для построения двоичных сумматоров. Полусумматор позволяет вычислять сумму A+B, где A и B — это разряды двоичного числа, при этом результатом будут два бита S,C, где S — это бит суммы по модулю, а C — бит переноса.
 +
 +
'''[http://ru.wikipedia.org/wiki/Сумматор Сумматор]''' — логический операционный узел, выполняющий арифметическое сложение двоичных, троичных или n-ичных кодов двух (бинарный), трёх (тринарный) или n чисел (n-нарный). При арифметическом сложении выполняются и другие дополнительные операции: учёт знаков чисел, выравнивание порядков слагаемых и тому подобное.
 +
 +
'''[http://ru.wikipedia.org/wiki/Триггер Триггер]''' — класс электронных устройств, обладающих способностью длительно находиться в одном из двух или более устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознаётся по значению выходного напряжения. По характеру действия триггеры относятся к импульсным устройствам — их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время.
 +
 +
<center>'''Примеры релейно-контактных схем'''</center>
 +
<center>
 +
<gallery>
 +
Изображение:Исключающие ИЛИ.jpg|2И
 +
Изображение:НЕ.jpg|НЕ
 +
Изображение:2И-НЕ.jpg|2И-НЕ
 +
Изображение:2ИЛИ-НЕ.jpg|2ИЛИ-НЕ
 +
Изображение:2И.jpg|2И
 +
Изображение:2ИЛИ.jpg|2ИЛИ
 +
Изображение:2И.jpg|2И
 +
</gallery>
 +
</center>
  
 +
<center>'''Нами были созданы программы по основным логическим элементам в электронно-вычислительной технике на языке Delphi'''</center>
  
 
{|  
 
{|  
 
!<big>Полусумматор</big>
 
!<big>Полусумматор</big>
 
!<big>Полный сумматор</big>
 
!<big>Полный сумматор</big>
!<big>Тригер</big>
+
!<big>Триггер</big>
 
|-
 
|-
|[[Изображение:Полусумматор.JPG|200px]]
+
|[[Изображение:Полусумматор.JPG|center|200px]]
|[[Изображение:Полный сумматор.JPG|300px]]
+
|[[Изображение:Полный сумматор.JPG|center|300px]]
|[[Изображение:Триггер.JPG|315px]]
+
|[[Изображение:Триггер.JPG|center|315px]]
 
|-
 
|-
 
|var x,y,Pi,P,S:Boolean;
 
|var x,y,Pi,P,S:Boolean;
Строка 69: Строка 110:
 
Pi:=strtobool(edit7.text);
 
Pi:=strtobool(edit7.text);
  
P:=(not x and y and Pi)or(x and not y and Pi)or(x and y and not Pi)or(x and y and Pi);
+
P:=(not x and y and Pi)or(x and not y and Pi)
 +
 
 +
or(x and y and not Pi)or(x and y and Pi);
 +
 
 +
S:=(not x and not y and Pi)or(not x and y and not Pi)
  
S:=(not x and not y and Pi)or(not x and y and not Pi)or(x and not y and not Pi)or(x and y and Pi);
+
or(x and not y and not Pi)or(x and y and Pi);
  
 
edit8.text:=booltostr(S,true);
 
edit8.text:=booltostr(S,true);
Строка 90: Строка 135:
 
y:=strtobool(edit6.Text);
 
y:=strtobool(edit6.Text);
  
p:=strtobool(edit7.Text);
+
P:=strtobool(edit7.Text);
 +
 
 +
S:=(not x and not y and p) or (not x and y and not p)
  
s:=(not x and not y and p) or (not x and y and not p) or (x and not y and not p) or (x and y and p);
+
or(x and not y and not p) or (x and y and p);
  
pi:=(not x and y and p) or (x and not y and p) or(x and y and not p) or(x and y and p);
+
Pi:=(not x and y and p) or (x and not y and p)  
 +
 
 +
or(x and y and not p) or(x and y and p);
  
 
edit8.text:=booltostr(s,true);
 
edit8.text:=booltostr(s,true);
Строка 135: Строка 184:
  
 
==Вывод==
 
==Вывод==
 
+
В ходе проектной деятельности мы выяснили роль логических элементов в вычислительной технике. Для классификации логических элементов нами построен кластер. Выполнено моделирование на языке Delphi триггера, полу сумматора и сумматора. Выполнен подбор ссылок по теме проекта, создана карта знаний демонстрирующая основные логические элементы.
  
 
==Полезные ресурсы==
 
==Полезные ресурсы==
[http://ru.wikipedia.org/wiki/Математическая_логика/ Математическая логика]
 
 
[http://ru.wikipedia.org/wiki/Сетунь_(компьютер)/ Сетунь(компьютер)]
 
 
[http://ru.wikipedia.org/wiki/Логика_в_информатике/ Логика в информатике]
 
 
[http://inf1.info/logic/ Алгебра логики и логические основы компьютера]
 
  
[http://ru.wikipedia.org/wiki/Полусумматор/ Полусумматор]
+
[http://ru.wikipedia.org/wiki/Сетунь_(компьютер) Сетунь(компьютер)]
  
[http://ru.wikipedia.org/wiki/Сумматор/ Сумматор]
+
[http://ru.wikipedia.org/wiki/Логика_в_информатике Логика в информатике]
  
[http://ru.wikipedia.org/wiki/Триггер/ Триггер]
+
[http://inf1.info/logic Алгебра логики и логические основы компьютера]
  
 +
[http://http://www.ref.by/refs/49/10030/1.html Структура нечеткой логики]
  
== Другие документы ==
+
'''Методическое пособие по информатике Круподёровой Елены Петровны'''
  
 
[[Категория:Проекты]]
 
[[Категория:Проекты]]

Текущая версия на 12:58, 26 октября 2010

Название проекта

Учебный проект Вычисляем рассуждения

Авторы и участники проекта

  1. Плеханов Семён Петрович: Координатор группы - создание карты знаний и таблиц, редакт вики страницы, создание гугл групы
  2. Лабзин Андрей Федорович: Редактирование информации и вики страницы, создание страницы БобрДобр, работа над программами и их текстом.
  3. Гришин Евгений Анатольевич: Работа над программами и их текстом, создание бета версии карты знаний, поиск информации
  4. Кислицкий Илья Станиславович: Поиск информации.
  5. Комаров Иван Александрович: Обработка информации.

Тема исследования группы

Приложения математической логики в современной электронно-вычислительной технике.

Поставленные задачи

1) Создать группу <<Инженеры>> на Google для организации взаимодействия в ходе исследовательской работы.
2) Осуществить совместный подбор ссылок на Интернет-ресурсы и поиск информации в печатных изданиях по теме исследования.
3) Провести анализ полученной информации по теме исследования и ответить на вопросы:
а) как язык классической математической логики находит применение при построении релейно-контактных схем?
б) что такое нечеткая логика и в каких областях она применяется?
4) Сформулировать выводы по результатам исследования.
5) Оформить результаты исследования.

Проблемный вопрос (вопрос для исследования)

Как аппарат математической логики применяется в современной электронно-вычислительной технике?

Гипотеза исследования

Мы предполагаем, что математическая логика
имеет достаточно широкое применение в современной электронно-вычислительной технике(Логические элементы).

Цели исследования

Провести анализ возможностей использования языка математической логики в современной электронно-вычислительной технике.

Результаты исследования

Нами была создана Google группа

Был произведён подбор ссылок на сервисе ДоброгоБобра

Мы ознакомились с основными понятиями математической и нечеткой логики.

Математическая логика (или символическая логика) - область знания, которая сложилась в результате применения в логике формальных методов математики и логического исследования математических рассуждений и доказательств. В математической логике логические процессы изучаются посредством их отображения в формализованных языках, или логических исчислениях. Наряду с изучением формального строения логических исчислений (Логический синтаксис) в математической логике встает также задача рассмотрения отношений между исчислениями и теми содержательными областями, которые служат их интерпретациями и моделями. Эта задача обрисовывает проблематику логической семантики. Логический синтаксис и семантика включаются в металогику - теорию средств описания, предпосылок и свойств логических исчислений. Некоторые исходные понятия математической логике содержатся уже в учении мегаро-стоической школы (3 в. до н. э.). Саму же идею логического исчисления, по-видимому, впервые сформулировал Лейбниц. Однако как самостоятельная дисциплина математическая логика оформилась в середине 19 в. благодаря работам Буля. С Буля начинается развитие так называемой алгебры логики. Другое направление разработки математической логики ставшее определяющим, начинается с конца 19 века в связи с потребностями математики в обосновании своих понятий и способов доказательств. У истоков этого направления лежат труды Фреге. Значительный вклад в его развитие внесли Рассел, Уайтхед и Гильберт. В этот период создаются фундаментальные логические системы математической логики - классические исчисление высказываний и исчисление предикатов. Крупные результаты, определившие современное состояние математической логики, были получены в. 30-х гг. Гёделем. Тарским, А. Чёрчем. Современный этап математической логики характеризуется исследованием разнообразных видов логических исчислений, интересом к проблемам семантики и вообще металогики, к вопросам специальных математических и технических приложений логики. В связи с задачами обоснования математики наряду с работами в области классической математической логике разрабатывается интуиционистская и конструктивная логика. С анализом оснований логики связаны исследования по комбинаторной логике. Ведутся исследования в области многозначных, модальных и релевантных логик. Математическая логика оказала влияние на развитие ряда разделов современной математики, общей алгебры, теории алгоритмов, рекурсивных функций, формальных систем. Математическая логика находит приложение в электротехнике (исследование релейно-контактных и электронных схем), вычислительной технике (программирование), кибернетике (теория автоматов), нейрофизиологии (моделирование нейронных сетей), языкознании (структурная лингвистика и семиотика).

Еще мы нашли информацию по нечеткой логике(Fuzzy logic):

Нечеткая логика и теория нечётких множеств — раздел математики, являющийся обобщением классической логики и теории множеств. Понятие нечёткой логики было впервые введено профессором Лютфи Заде в 1965 году. В этой статье понятие множества было расширено допущением, что функция принадлежности элемента к множеству может принимать любые значения в интервале [0...1], а не только 0 или 1. Такие множества были названы нечёткими. Также автором были предложены различные логические операции над нечёткими множествами и предложено понятие лингвистической переменной, в качестве значений которой выступают нечёткие множества.

Нами была создана карта знаний по основным логическим элементам
Карта знаний по основным логическим операциям

Таблицы истинности

Полусумматор— логическая схема имеющая два входа и два выхода (двухразрядный сумматор, бинарный сумматор). Полусумматор используется для построения двоичных сумматоров. Полусумматор позволяет вычислять сумму A+B, где A и B — это разряды двоичного числа, при этом результатом будут два бита S,C, где S — это бит суммы по модулю, а C — бит переноса.

Сумматор — логический операционный узел, выполняющий арифметическое сложение двоичных, троичных или n-ичных кодов двух (бинарный), трёх (тринарный) или n чисел (n-нарный). При арифметическом сложении выполняются и другие дополнительные операции: учёт знаков чисел, выравнивание порядков слагаемых и тому подобное.

Триггер — класс электронных устройств, обладающих способностью длительно находиться в одном из двух или более устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознаётся по значению выходного напряжения. По характеру действия триггеры относятся к импульсным устройствам — их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время.

Примеры релейно-контактных схем
Нами были созданы программы по основным логическим элементам в электронно-вычислительной технике на языке Delphi
Полусумматор Полный сумматор Триггер
Полусумматор.JPG
Полный сумматор.JPG
Триггер.JPG
var x,y,Pi,P,S:Boolean;

procedure TForm1.Button1Click(Sender: TObject);

begin

x:=strtobool(edit5.text);

y:=strtobool(edit6.text);

Pi:=strtobool(edit7.text);

P:=(not x and y and Pi)or(x and not y and Pi)

or(x and y and not Pi)or(x and y and Pi);

S:=(not x and not y and Pi)or(not x and y and not Pi)

or(x and not y and not Pi)or(x and y and Pi);

edit8.text:=booltostr(S,true);

edit9.text:=booltostr(P,true);

end;

end.

var x,y,s,p,pi :boolean;

procedure TForm1.Button1Click(Sender: TObject);

begin

x:=strtobool(edit5.Text);

y:=strtobool(edit6.Text);

P:=strtobool(edit7.Text);

S:=(not x and not y and p) or (not x and y and not p)

or(x and not y and not p) or (x and y and p);

Pi:=(not x and y and p) or (x and not y and p)

or(x and y and not p) or(x and y and p);

edit8.text:=booltostr(s,true);

edit9.text:=booltostr(pi,true);

end;

end.

var S,R,Or1Out,Not1out,or2out,not2out:boolean

procedure TForm2.Button1Click(Sender: TObject);

begin

S:=StrToBool(editset.text);

R:=StrToBool(editreset.text);

or1out:=s or not2out;

not1out:=not or1out;

or2out:=not1 out or r;

not2out:=bot or2out;

editor1out.text:=booltostr(or1out,true);

editor2out.text:=booltostr(or2out,true);

editq2.text:=booltostr(not1out,true);

editq1.text:=booltostr(not2out,true);

end;

end.

Вывод

В ходе проектной деятельности мы выяснили роль логических элементов в вычислительной технике. Для классификации логических элементов нами построен кластер. Выполнено моделирование на языке Delphi триггера, полу сумматора и сумматора. Выполнен подбор ссылок по теме проекта, создана карта знаний демонстрирующая основные логические элементы.

Полезные ресурсы

Сетунь(компьютер)

Логика в информатике

Алгебра логики и логические основы компьютера

Структура нечеткой логики

Методическое пособие по информатике Круподёровой Елены Петровны