Результаты исследований обучающихся в проекте Точка, прямая и плоскость

Материал из Wiki Mininuniver
Версия от 09:50, 10 июня 2019; Мисевра София (обсуждение | вклад) (Результаты проведённого исследования)
Перейти к навигацииПерейти к поиску


Авторы и участники проекта

  1. Мисевра София Сергеевна

Участник группы: Любознайки

Тема исследования группы

Взаимное расположение прямой и плоскости в пространстве

Проблемный вопрос (вопрос для исследования)

Случаи взаимного расположения точки, прямой и плоскости в пространстве;

Свойства и теоремы взаимного расположения прямых в пространстве.

Гипотеза исследования

Мы считаем, что необходимость знания взаимного расположения прямых и плоскостей в пространстве крайне необходимо. Эти знания используются в строительстве, производстве оборудованиия и во многих других сферах деятельности человека. Прямые в пространстве могут быть пересекающимися, параллельными или скрещивающимися.

Цели исследования

1) Провести опрос одноклассников об их знании стереометрии

2) Сформулировать и доказать все теоремы и свойства взаимного расположения точки, прямой и плоскости в пространстве.

3)Установить необходимость изучения стереометрии для использования и применения в жизни.

Результаты проведённого исследования

Как задать плоскость в пространстве

1) При опросе учащихся было выявлено, что уровень знаний о взаимном расположении точки, прямой и плоскости - удовлетворительный. Учащиеся знают случаи взаимного расположения, но не могут сформулировать свойства и теоремы.

2) 1. Первый способ основан на одной из аксиом: единственная плоскость проходит через 3 точки, не лежащие на одной прямой. Следовательно, мы можем задать плоскость, просто указав три таких точки.

Если у нас есть прямоугольная система координат в трехмерном пространстве, в которой задана плоскость с помощью этого способа, то мы можем составить уравнение этой плоскости. 2. Второй способ – задание плоскости с помощью прямой и точки, не лежащей на этой прямой. Это следует из аксиомы о плоскости, проходящей через 3 точки

3. Третий способ заключается в задании плоскости, которая проходит через две пересекающиеся прямые

4. Четвертый способ основан на параллельных прямых. Если мы укажем в пространстве две такие прямые, то мы тем самым сможем определить для них ту самую единственную плоскость. Если у нас есть прямоугольная система координат в пространстве, в которой уже задана плоскость этим способом, то мы можем вывести уравнение такой плоскости.

Если мы зададим точку, то мы сможем задать плоскость, которая проходит через нее, и ту плоскость, которой она будет параллельна.

Можно задать плоскость путем указания конкретной точки, через которую она будет проходить, и прямой, которая будет перпендикулярна по отношению к ней.

Варианты взаимного расположения прямой и плоскости Самый простой вариант – прямая находится в плоскости. Тогда в ней будут расположены как минимум две точки этой прямой. Сформулируем аксиому:

Варианты взаимного расположения прямой и плоскости

Самый простой вариант – прямая находится в плоскости. Тогда в ней будут расположены как минимум две точки этой прямой. Сформулируем аксиому:

Если хотя бы две точки заданной прямой находятся в некоторой плоскости, это значит, что все точки этой прямой расположены в данной плоскости.

Второй вариант взаимного расположения – это когда прямая пересекает плоскость. В таком случае у них будет всего одна общая точка – точка пересечения.

Если у нас есть две прямые, одна из которых лежит в плоскости, а другая ее пересекает, то они являются перпендикулярными друг другу.

Третий случай взаимного расположения прямой и плоскости – это их параллельность. В таком случае ни одной общей точки у них нет.


3) Нашу жизнь очень трудно представить без стереометрии. Все предметы, которые нас окружают, изготовлены в виде геометрических фигур. В архитектуре применяются знания о стереометрии для строительства зданий. Дизайнеры применяют правильные многогранники для изготовления декоративных вещей и предметов роскоши.

Правильные многогранники.

Вокруг нас в основном встречаются тела, напоминающие по форме правильные многогранники.

Правильный многогранник или плато́ново тело — это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией

Стереометрия в искусстве.

В эпоху Возрождения произошло слияние трех течений, что упростило изучение многогранников. С одной стороны, с возвратом интереса к Античности стало уделяться особое внимание этим геометрическим фигурам, которые рассматривал еще Евклид в «Началах» с математической точки зрения, а Платон в своих диалогах — с космологической точки зрения. С другой стороны, с распространением математической перспективы впервые стало возможным «увидеть» эти фигуры на рисунках, и они стали изучаться более подробно.

Стереометрия в архитектуре нашего города.

Стереометрию можно найти и в архитектуре нашего города. Гениальные идеи Мельникова живы и сегодня.

Таким образом, стереометрия окружает человека. Мы можем найти стереометрию в искусстве, в науке, в технике. Мебель в комнате, окна, двери – все это содержит в себе основные свойства и форму фигур стереометрии.

Вывод

1) При опросе учащихся было выявлено, что уровень знаний о взаимном расположении точки, прямой и плоскости - удовлетворительный. Учащиеся знают случаи взаимного расположения, но не могут сформулировать свойства и теоремы.

2) Были сформулированы и доказаны все аксиомы, теоремы и свойства взаимного расположения точки, прямой и плоскости в пространстве.

3) Установлена необходимость изучения стереометрии для использования и применения в жизни.

Полезные ресурсы

[ссылка пробел название ресурса]

Справочник 24

Курсотека

Zaochnic.com

Другие документы

Учебный проект Точка, прямая и плоскость