Результаты исследования студентов в проекте Электрический ток в различных средах

Материал из Wiki Mininuniver
Версия от 11:30, 19 июня 2010; ПолозковаЕлена (обсуждение | вклад) (Полезные ресурсы)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к навигацииПерейти к поиску

Авторы и участники проекта

Благодинова Вероника Валерьевна и студенты группы ИСТ-09

Тема исследования группы

Электрический ток в газах

Проблемный вопрос (вопрос для исследования)

Каковы условия возникновения электрического тока в газах?

Гипотеза исследования

Газы являются проводниками, если в них создать упорядоченное движение заряженных частиц

Цели исследования

Выявить условия возникновения свободных заряженных частиц в газах и причины, вызывающие их упорядоченное движение

Результаты проведённого исследования

Газ диэлектрик или проводник?

Вы знаете, что при обычных условиях все газы являются диэлектриками, то есть не проводят электрического тока. Этим свойством объясняется, например, широкое использование воздуха в качестве изолирующего вещества. Принцип действия выключателей и рубильников как раз и основан на том, что размыкая их металлические контакты, мы создаем между ними прослойку воздуха, не проводящую ток.

Рубильник1.gif

Однако при определенных условиях газы могут становиться проводниками. Например, пламя, внесенное в пространство между двумя металлическими дисками (см. рисунок), приводит к тому, что гальванометр отмечает появление тока. Отсюда следует вывод: пламя, то есть газ, нагретый до высокой температуры, является проводником электрического тока.

Опыт нагревание газа.gif

Нагревание – не единственный способ превращения газа в проводник. Вместо пламени можно использовать ультрафиолетовое или рентгеновское излучение, а также поток альфа-частиц или электронов. Опытами установлено, что действие любой из этих причин приводит к ионизации молекул газа. При этом от некоторых молекул отрывается один (или несколько) электронов, в результате чего молекула превращается в положительный ион. Под воздействием электрического поля, существующего между дисками, образовавшиеся ионы и электроны начинают двигаться, создавая между дисками электрический ток. Прохождение тока через газы называют газовым разрядом. Только что мы рассмотрели пример так называемого несамостоятельного разряда. Он так называется потому, что для его поддержания требуется какой-либо ионизатор – пламя, излучение или поток заряженных частиц. Опыты показывают, что если ионизатор устранить, то ионы и электроны вскоре воссоединяются (говорят: рекомбинируют), вновь образуя электронейтральные молекулы. В результате газ перестает проводить ток, то есть становится диэлектриком.

Самостоятельная и несамостоятельная проводимость газов

В естественном состоянии газы не проводят электрического тока, т.е. являются диэлектриками. В этом легко убедиться с помощью простого тока, если цепь прервана воздушным промежутком. Изолирующие свойства газов объясняются тем, что атомы и молекулы газов в естественном состоянии являются нейтральными незаряженными частицами. Отсюда ясно, что для того, чтобы сделать газ проводящим, нужно тем или иным способом внести в него или создать в нем свободные носители заряда – заряженные частицы. При этом возможны два случая: либо эти заряженные частицы создаются действием какого-нибудь внешнего фактора или вводятся в газ извне – несамостоятельная проводимость, либо они создаются в газе действием самого электрического поля, существующего между электродами – самостоятельная проводимость.

Воздух не проводит ток.jpg

В приведенном рисунке гальванометр в цепи показывает отсутствие тока несмотря на приложенное напряжение. Это свидетельствует об отсутствии проводимости газов в обычных условиях. Нагреем теперь газ в промежутке 1-2 до очень высокой температуры, внеся в него зажженную горелку. Гальванометр укажет появление тока, следовательно при высокой температуре доля нейтральных молекул газа распадается на положительные и отрицательные ионы. Такое явление называется ионизацией газа.

Нагревание с вольтметром.jpg

Нагревание газа до высокой температуры не является единственные способом ионизации молекул или атомов газа. Нейтральные атомы или молекулы газа могут ионизироваться также и под воздействием других факторов. Ионная проводимость имеет рад особенностей. Так, нередко положительные и отрицательные ионы представляют собой не единичные ионизированные молекулы, а группы молекул, прилипших к отрицательному или положительному электрону. Благодаря этому, хотя заряд каждого иона равен одному-двум, редко большему числу элементарных зарядов, массы их могут значительно отличаться от масс отдельных атомов и молекул. Этом газовые ионы существенно отличаются от ионов электролитов, представляющих всегда определенные группы атомов. В силу этого различия при ионной проводимости газов не имеют место законы Фарадея, столь характерные для проводимости электролитов. Второе, также очень важное, отличие ионной проводимости газов от ионной проводимости электролитов состоит в том, что для газов не соблюдается закон Ома: вольтамперная характеристика имеет более сложный характер. Вольтамперная характеристика проводников (в том числе и электролитов) имеет вид наклонной прямой (пропорциональность I и U), для газов она имеет разнообразную форму. В частности, в случае несамостоятельной проводимости, при небольших значениях U график имеет вид прямой, т.е. закон Ома приближенно сохраняет силу; с ростом U кривая загибается с некоторого напряжения и переходит в горизонтальную прямую.

Вольтампернаяхарактеристика.jpg

Это означает, что начиная с некоторого напряжения, ток сохраняет постоянное значение, несмотря на увеличение напряжения. Это постоянное, не зависящее от напряжения значение силы тока называют током насыщения. Нетрудно понять смысл полученных результатов. Вначале с ростом напряжения увеличивается число ионов, проходящих через сечение разряда, т.е. увеличивается ток I, ибо ионы в более сильном поле движется с большей скоростью. Однако, как бы быстро не двигались ионы, число их, проходящее через это сечение за единицу времени, не может быть больше, чем общее число ионов, создаваемых в разряде в разряде в единице времени внешними ионизирующим фактором. Опыты показывают, однако, что если после достижения тока насыщения в газе продолжать значительно повышать напряжение, то ход вольтамперной характеристики внезапно нарушается. При достаточно большом напряжении ток резко возрастает.

Скачок напряжения.jpg

Скачок тока показывает, что число ионов сразу резко возросло. Причиной этого является само электрическое поле: оно сообщает некоторым ионам столь большие скорости, т.е. столь большую энергию, что при соударении таких ионов с нейтральными молекулами последние разбиваются на ионы. Общее число ионов определяется теперь не ионизирующим фактором, а действием самого поля, которое может само поддерживать необходимую ионизацию: проводимость из несамостоятельной становится самостоятельной. Описанное явление внезапного возникновения самостоятельной проводимости, имеющее характер пробоя газового промежутка, - не единственная, хотя и весьма важная, форма возникновения самостоятельной проводимости.

Электрический ток в газах

Вывод

В газах возможно возникновение электрического тока. Ионизация молекул газа приводит к возникновению электрического тока в газах. При этом от некоторых молекул отрывается один (или несколько) электронов, в результате чего молекула превращается в положительный ион. Под воздействием электрического поля, существующего между дисками, образовавшиеся ионы и электроны начинают двигаться, создавая между дисками электрический ток. Прохождение тока через газы называют газовым разрядом.

Проверочный лист по теме "Электрический ток в газах"

Полезные ресурсы

Википедия

Большая советская энциклопедия

Энциклопедия Кругосвет

Другие документы

Учебный проект Электрический ток в различных средах