Результаты исследования учащихся в проекте матрицы в Pascale
Содержание
Авторы и участники проекта
Кудряшова Екатерина, Поломошнова Екатерина и участники группы "Математики"
Тема исследования группы
Математические задачи
Исследования выполняются в рамках проекта "Матрицы в Pascale"
Проблемный вопрос (вопрос для исследования)
Как с помощью матриц можно решать математические задачи ?
Гипотеза исследования
Мы считаем для того, чтобы, c помощью матриц решать математические задачи необходимо собрать подходящую информацию и правильно применить матрицу.
Цели исследования
- Понять каким образом матрица применяется в математических задачах.
- Разобрать примеры матриц в математических задачах.
- Проанализировать результаты.
Результаты проведённого исследования
Матрицы широко применяются в математике для компактной записи систем линейных алгебраических или дифференциальных уравнений. В этом случае, количество строк матрицы соответствует числу уравнений, а количество столбцов — количеству неизвестных. В результате, решение систем линейных уравнений сводится к операциям над матрицами.
Систему из <math>m</math> уравнений с <math>n</math> неизвестными
- <math>\begin{cases}
a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\ \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m
\end{cases}</math>
можно представить в матричном виде
- <math>A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} ;\quad X = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} ;\quad B = \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{pmatrix}</math>
и тогда всю систему можно записать так:
- <math>AX = B</math>,
где <math>A</math> имеет смысл таблицы коэффициентов <math>a_{ij}</math> системы уравнений.
Если <math>m = n</math> и матрица <math>A</math> невырожденная, то решение этого уравнения состоит в нахождении обратной матрицы <math>A^{-1}</math>, поскольку умножив обе части уравнения на эту матрицу слева
- <math>A^{-1}AX = A^{-1}B</math>
<math>A^{-1}A</math> — превращается в <math>E</math> (единичную матрицу). И это даёт возможность получить столбец корней уравнений
- <math>X = A^{-1}B</math>.
Все правила, по которым проводятся операции над матрицами, выводятся из операций над системами уравнений.