Результаты исследования учащихся в проекте Основы логики: различия между версиями

Материал из Wiki Mininuniver
Перейти к навигацииПерейти к поиску
(Результаты проведённого исследования)
(Результаты проведённого исследования)
Строка 45: Строка 45:
 
Способ рассуждений - самый примитивный способ. Этим способом решаются самые простые логические задачи. Его идея состоит в том, что мы проводим рассуждения, используя последовательно все условия задачи, и приходим к выводу, который и будет являться ответом задачи.
 
Способ рассуждений - самый примитивный способ. Этим способом решаются самые простые логические задачи. Его идея состоит в том, что мы проводим рассуждения, используя последовательно все условия задачи, и приходим к выводу, который и будет являться ответом задачи.
  
'''Задача 1.''' Вадим, Сергей и Михаил изучают различные иностранные языки: китайский, японский и арабский. На вопрос, какой язык изучает каждый из них, один ответил: "Вадим изучает китайский, Сергей не изучает китайский, а Михаил не изучает арабский". Впоследствии выяснилось, что в этом ответе только одно утверждение верно, а два других ложны. Какой язык изучает каждый из молодых людей?
+
'''Задача.''' Вадим, Сергей и Михаил изучают различные иностранные языки: китайский, японский и арабский. На вопрос, какой язык изучает каждый из них, один ответил: "Вадим изучает китайский, Сергей не изучает китайский, а Михаил не изучает арабский". Впоследствии выяснилось, что в этом ответе только одно утверждение верно, а два других ложны. Какой язык изучает каждый из молодых людей?
  
 
'''Решение.''' Имеется три утверждения. Если верно первое утверждение, то верно и второе, так как юноши изучают разные языки. Это противоречит условию задачи, поэтому первое утверждение ложно. Если верно второе утверждение, то первое и третье должны быть ложны. При этом получается, что никто не изучает китайский. Это противоречит условию, поэтому второе утверждение тоже ложно. Остается считать верным третье утверждение, а первое и второе — ложными. Следовательно, Вадим не изучает китайский, китайский изучает Сергей.
 
'''Решение.''' Имеется три утверждения. Если верно первое утверждение, то верно и второе, так как юноши изучают разные языки. Это противоречит условию задачи, поэтому первое утверждение ложно. Если верно второе утверждение, то первое и третье должны быть ложны. При этом получается, что никто не изучает китайский. Это противоречит условию, поэтому второе утверждение тоже ложно. Остается считать верным третье утверждение, а первое и второе — ложными. Следовательно, Вадим не изучает китайский, китайский изучает Сергей.
Строка 78: Строка 78:
 
В этом разделе рассматривается еще один тип логических задач. Это задачи, в которых с помощью сосудов известных емкостей требуется отмерить некоторое количество жидкости, а также задачи, связанные с операцией взвешивания на чашечных весах. Простейший прием решения задач этого класса состоит в переборе возможных вариантов. Понятно, что такой метод решения не совсем удачный, в нем трудно выделить какой-либо общий подход к решению других подобных задач.
 
В этом разделе рассматривается еще один тип логических задач. Это задачи, в которых с помощью сосудов известных емкостей требуется отмерить некоторое количество жидкости, а также задачи, связанные с операцией взвешивания на чашечных весах. Простейший прием решения задач этого класса состоит в переборе возможных вариантов. Понятно, что такой метод решения не совсем удачный, в нем трудно выделить какой-либо общий подход к решению других подобных задач.
 
Более систематический подход к решению задач "на переливание" заключается в использовании блок-схем. Суть этого метода состоит в следующем. Сначала выделяются операции, которые позволяют нам точно отмерять жидкость. Эти операции называются командами. Затем устанавливается последовательность выполнения выделенных команд. Эта последовательность оформляется в виде схемы. Подобные схемы называются блок-схемами и широко используются в программировании. Составленная блок-схема является программой, выполнение которой может привести нас к решению поставленной задачи. Для этого достаточно отмечать, какие количества жидкости удается получить при работе составленной программы. При этом обычно заполняют отдельную таблицу, в которую заносят количество жидкости в каждом из имеющихся сосудов.
 
Более систематический подход к решению задач "на переливание" заключается в использовании блок-схем. Суть этого метода состоит в следующем. Сначала выделяются операции, которые позволяют нам точно отмерять жидкость. Эти операции называются командами. Затем устанавливается последовательность выполнения выделенных команд. Эта последовательность оформляется в виде схемы. Подобные схемы называются блок-схемами и широко используются в программировании. Составленная блок-схема является программой, выполнение которой может привести нас к решению поставленной задачи. Для этого достаточно отмечать, какие количества жидкости удается получить при работе составленной программы. При этом обычно заполняют отдельную таблицу, в которую заносят количество жидкости в каждом из имеющихся сосудов.
 +
 +
'''Задача.''' Имеются два сосуда — трехлитровый и пятилитровый. Нужно, пользуясь этими сосудами, получить 1, 2, 3, 4, 5, 6, 7 и 8 литров воды. В нашем распоряжении водопроводный кран и раковина, куда можно выливать воду.
 +
 +
'''Решение.''' Перечислим все возможные операции, которые могут быть использованы нами, и введем для них следующие сокращенные обозначения: НБ — наполнить больший сосуд водой из-под крана; НМ — наполнить меньший сосуд водой из-под крана; ОБ — опорожнить больший сосуд, вылив воду в раковину; ОМ — опорожнить меньший сосуд, вылив воду в раковину; Б→М — перелить из большего в меньший, пока больший сосуд не опустеет или меньший сосуд не наполнится; М→Б — перелить из меньшего в больший, пока меньший сосуд не опустеет или больший сосуд не наполнится. Выделим среди перечисленных команд только три: НБ, Б→М, ОМ. Кроме этих трех команд рассмотрим еще две вспомогательные команды: Б = 0 ? — посмотреть, пуст ли больший сосуд; М = З ? — посмотреть, наполнен ли малый сосуд.
 +
В зависимости от результатов этого осмотра мы переходим к выполнению следующей команды по одному из двух ключей - "да" или "нет". Такие команды в программировании принято называть командами "условного перехода" и изображать в блок-схемах в виде ромбика с двумя ключами-выходами.
 +
Договоримся теперь о последовательности выполнения выделенных команд. После Б→М будем выполнять ОМ всякий раз, как меньший сосуд оказывается наполненным, и НБ всякий раз, как больший сосуд будет опорожнен. Последовательность команд изобразим в виде блок-схемы (Рис. 1). Начнем выполнение программы. Будем фиксировать, как меняется количество воды в сосудах, если действовать по приведенной схеме. Результаты оформим в виде таблицы (табл.).
 +
 +
[[Изображение:Алексеевтаблицаблоксх.png]]
  
 
'''Метод пятый: Метод математического бильярда'''
 
'''Метод пятый: Метод математического бильярда'''

Версия 11:40, 13 декабря 2012

Авторы и участники проекта

Бычков Дмитрий

Алексеев Алексей

и участники группы Математики

Тема исследования группы

Использование методов и приемов вычисления логической задачи

Проблемный вопрос (вопрос для исследования)

Каковы способы и методы решения логических задач?

Гипотеза исследования

Мы считаем, чтобы определить способы и методы решения логических задач, необходимо ввести начальные понятия.

Цель исследования

Доказать, что для опредения способов и методов решения логических задач необходимо ввести начальные понятия.

Результаты проведённого исследования

Известно несколько различных способов решения логических задач. Давайте назовем их так:



Метод рассуждений;

Метод таблиц;

Метод графов;

Метод блок-схем;

Метод бильярда;

Метод кругов Эйлера.



Остановимся отдельно на каждом из выделенных методов, иллюстрируя их примерами решения конкретных задач.

Метод первый: Метод рассуждений

Способ рассуждений - самый примитивный способ. Этим способом решаются самые простые логические задачи. Его идея состоит в том, что мы проводим рассуждения, используя последовательно все условия задачи, и приходим к выводу, который и будет являться ответом задачи.

Задача. Вадим, Сергей и Михаил изучают различные иностранные языки: китайский, японский и арабский. На вопрос, какой язык изучает каждый из них, один ответил: "Вадим изучает китайский, Сергей не изучает китайский, а Михаил не изучает арабский". Впоследствии выяснилось, что в этом ответе только одно утверждение верно, а два других ложны. Какой язык изучает каждый из молодых людей?

Решение. Имеется три утверждения. Если верно первое утверждение, то верно и второе, так как юноши изучают разные языки. Это противоречит условию задачи, поэтому первое утверждение ложно. Если верно второе утверждение, то первое и третье должны быть ложны. При этом получается, что никто не изучает китайский. Это противоречит условию, поэтому второе утверждение тоже ложно. Остается считать верным третье утверждение, а первое и второе — ложными. Следовательно, Вадим не изучает китайский, китайский изучает Сергей.

Ответ: Сергей изучает китайский язык, Михаил — японский, Вадим — арабский.


Метод второй: Метод таблиц

Основной прием, который используется при решении текстовых логических задач, заключается в построении таблиц. Таблицы не только позволяют наглядно представить условие задачи или ее ответ, но в значительной степени помогают делать правильные логические выводы в ходе решения задачи.

Задача. Три клоуна Бим, Бам и Бом вышли на арену в красной, зеленой и синей рубашках. Их туфли были тех же цветов. У Бима цвета рубашки и туфель совпадали. У Бома ни туфли, ни рубашка не были красными. Бам был в зеленых туфлях, а в рубашке другого цвета. Как были одеты клоуны?

Решение. Составим таблицу, в столбцах которой отметим возможные цвета рубашек и туфель клоунов (буквами К, З и С обозначены красный, зеленый и синий цвета). Будем заполнять таблицу, используя условия задачи. Туфли Бама зеленые, а рубашка не является зеленой. Ставим знак + в клетку 2-й строки и 5-го столбца, и знак - в клетку 2-й строки и 2-го столбца. Следовательно, у Бима и Бома туфли уже не могут быть зелеными, так же как не могут быть туфли Бама синими или красными. Отметим все это в таблице (см. табл. 1).

Алексеевтаблицаграфов.png

Далее, туфли и рубашка Бома не являются красными, отметим соответствующие ячейки таблицы знаком – . Из таблицы, заполненной на этом этапе, видим, что красные туфли могут быть только у Бима, а, следовательно, туфли Бома - синие. Правая часть таблицы заполнена, мы установили цвета обуви клоунов (табл.1). Цвет рубашки Бима совпадает с цветом его туфель и является красным. Теперь легко устанавливается владелец зеленой рубашки - Бом. Бам, в таком случае, одет в рубашку синего цвета. Мы полностью заполнили таблицу, в которой однозначно устанавли-ваются цвета туфель и рубашек клоунов (см. табл. 2): Бим одет в красную рубашку и красные туфли, Бам в синей рубашке и зеленых туфлях, Бом в зеленой рубашке и туфлях синего цвета.

Ответ: Бим одет в красную рубашку и красные туфли, Бам в синей рубашке и зеленых туфлях, Бом в зеленой рубашке и туфлях синего цвета.

Метод третий: Метод графов

Метод, основанный на соединении точек (вершин) линиями (ребрами) для подсчета возможных вариантов решения задач или такая пара множеств G=(V,E), где V есть подмножество любого счётного множества, а E — подмножество V×V.Применение различных вычислений, производимых на таком графе, позволяет, например, найти кратчайший объездной путь или ближайший продуктовый магазин, спланировать оптимальный маршрут.

Алексеевтеорияграфов.png


Метод четвёртый: Метод блок-схем

В этом разделе рассматривается еще один тип логических задач. Это задачи, в которых с помощью сосудов известных емкостей требуется отмерить некоторое количество жидкости, а также задачи, связанные с операцией взвешивания на чашечных весах. Простейший прием решения задач этого класса состоит в переборе возможных вариантов. Понятно, что такой метод решения не совсем удачный, в нем трудно выделить какой-либо общий подход к решению других подобных задач. Более систематический подход к решению задач "на переливание" заключается в использовании блок-схем. Суть этого метода состоит в следующем. Сначала выделяются операции, которые позволяют нам точно отмерять жидкость. Эти операции называются командами. Затем устанавливается последовательность выполнения выделенных команд. Эта последовательность оформляется в виде схемы. Подобные схемы называются блок-схемами и широко используются в программировании. Составленная блок-схема является программой, выполнение которой может привести нас к решению поставленной задачи. Для этого достаточно отмечать, какие количества жидкости удается получить при работе составленной программы. При этом обычно заполняют отдельную таблицу, в которую заносят количество жидкости в каждом из имеющихся сосудов.

Задача. Имеются два сосуда — трехлитровый и пятилитровый. Нужно, пользуясь этими сосудами, получить 1, 2, 3, 4, 5, 6, 7 и 8 литров воды. В нашем распоряжении водопроводный кран и раковина, куда можно выливать воду.

Решение. Перечислим все возможные операции, которые могут быть использованы нами, и введем для них следующие сокращенные обозначения: НБ — наполнить больший сосуд водой из-под крана; НМ — наполнить меньший сосуд водой из-под крана; ОБ — опорожнить больший сосуд, вылив воду в раковину; ОМ — опорожнить меньший сосуд, вылив воду в раковину; Б→М — перелить из большего в меньший, пока больший сосуд не опустеет или меньший сосуд не наполнится; М→Б — перелить из меньшего в больший, пока меньший сосуд не опустеет или больший сосуд не наполнится. Выделим среди перечисленных команд только три: НБ, Б→М, ОМ. Кроме этих трех команд рассмотрим еще две вспомогательные команды: Б = 0 ? — посмотреть, пуст ли больший сосуд; М = З ? — посмотреть, наполнен ли малый сосуд. В зависимости от результатов этого осмотра мы переходим к выполнению следующей команды по одному из двух ключей - "да" или "нет". Такие команды в программировании принято называть командами "условного перехода" и изображать в блок-схемах в виде ромбика с двумя ключами-выходами. Договоримся теперь о последовательности выполнения выделенных команд. После Б→М будем выполнять ОМ всякий раз, как меньший сосуд оказывается наполненным, и НБ всякий раз, как больший сосуд будет опорожнен. Последовательность команд изобразим в виде блок-схемы (Рис. 1). Начнем выполнение программы. Будем фиксировать, как меняется количество воды в сосудах, если действовать по приведенной схеме. Результаты оформим в виде таблицы (табл.).

Алексеевтаблицаблоксх.png

Метод пятый: Метод математического бильярда

Появившись до нашей эры в Индии и Китае, бильярд через много веков перекочевал в европейские страны – упоминание о нем имеется в английских летописях VI века. В России бильярд стал известен и распространился при Петре I. Подобно тому, как азартная игра в кости вызвала к жизни "исчисление" вероятностей, игра в бильярд послужила предметом серьезных научных исследований по механике и математике. Представьте себе горизонтальный бильярдный стол произвольной формы, но без луз. По этому столу без трения движется точечный шар, абсолютно упруго отражаясь от бортов стола. Спрашивается, какой может быть траектория этого шарика? Поиски ответа на этот вопрос и послужили появлению теории математического бильярда или теории траекторий.

Вывод

Полезные ресурсы

Другие документы