~Delete 37537: различия между версиями

Материал из Wiki Mininuniver
Перейти к навигацииПерейти к поиску
(Новая: y=.63kT/cr triple position. [http://www.selleckchem.com/products/VX-770.html Ivacaftor selleck chemicals], [http://www.selleckchem.com/products/bay80-6946.html BAY80-6946 selleck]These...)
 
(Spam cleanup)
(Метка: замена)
Строка 1: Строка 1:
y=.63kT/cr  triple position. [http://www.selleckchem.com/products/VX-770.html Ivacaftor selleck chemicals], [http://www.selleckchem.com/products/bay80-6946.html BAY80-6946 selleck]These final results are in fair arrangement withtheavailable simulation results. Better settlement with simulation is predicted ifinstead of the cosinefunctionineq. , ahyperbolictangentshape istaken. These twofunctionsare equivalent nearthemiddle ofthe interface andonlydiffer significantlynearthe Ivacaftor BAY80-6946 BI-D1870 endsof the interface,the place the cosinefunctionendsabruptly.Thereforewithahyperbolictangentformweexpecttogetabroaderinterface,butalmost the identical valueof y, sincethe contributions toyfromtheendsofthe interface are smaller.SincetheCurtin calculationhasusedadifferentformforthefree-energyfunctionaland adifferenttrial functionforthe densityfrom thatused in the MO calculation,itis not clearwhatcontributed most tothe differencefoundin theresults,particularlyinthevalueofy. Inviewofthisitmaybeinterestingto repeatthe calculationofMO withthe trialdensitygivenbyeqs. -.Theothersource ofthisdifferencemightbeattributedtodifferentcoexistingbulkphasedensitieswhichactas boundaryconditions.OxTtohbeyth Ivacaftor BAY80-6946 BI-D1870 ontoinhaolmcuolgteenetohusfcryestaelergy,descrirbaeddiusandin sectisonape5.1ohfasrybseteanlusedleibysHaarfruonwcteillnanodfsupercooling. If the crystal nucleus is assumed to be spherical, the order parameters Ap* and/.L~count onradial distance only. This assumption,which ignoresmicroscopic facetingof thenucleus, seemsquite reasonableforsystemsforwhichtheanisotropyin ciissmall. Asimilarinterpolation schemewas employed forê”.With these inputdata andputting ~ =, HO calculatedthe order parameters Ap* and p.1  as afunctionof r. Theirresultsshow that: the interface betweenthecrystal nucleusandthe liquidisof theorder of6-7 atomicdiametersthick  Ap*fallsfasterwithrthan~  Suggestingan ordered“shell” of liquiddensityaroundthenucleus andas ATincreases,the worth of p.~at r=0remainsessentially constantatthe solidvalue, when Ap* steadily decreases.Thismicroscopic pictureofthe nucleusmay, nevertheless,dependonthe accuracyof theinputdata totheSGA.  The effects foundbyHOforthe Helmholtz totally free energyandthe radiusof acritical nucleus as afunctionof AT are in qualitative settlement withthose foundby usingthe eapillarity approximation.The lattertheory on the other hand,appearstounderestimate thevalues ofthese portions. Thereare no experimentaldata offered on liquidsodiumwithwhichthese final results canbe as opposed. Theresultsedofinthetheory.AsMO givenherewehavealreadyseen,thepredictionofare envisioned to dependin some easesasseencsitiv-elyr,erDElwithoneortwoon the approximationsorderparametersis notreliable. Calculationsusingnonperturbativefree-energyfunctionalswithouttheSGA andwithparametrized densityhavingareasonable quantity ofvariationalparameters are highlyrecommended.  TheDElhasrecentlybeenemployedbyseveralworkersocalculatetheelasticconstantsofcrystals. The resultsfound forahard-spheres fcccrystal, on the other hand, raised particular confusion, because anegative elasticconstantwasreported revealthatthereportednegativeelasticconstantmaybeanartifactofapproxima-tionsusedinref. .  Allcalculationsonthehard-spheresfeccrystal andJones gave damaging values forthe C1,consistent  andPoisson’sratio .ThisresultremainedunchangedwhenmoreaccurateresultsfortheDCFdue to Henderson and Grundke were being utilized. This uncommon end result raises the problem ofwhether it is the artifact of the underlyingassumption intheir calculationor the reaction toa realfeature of the hard-spheres method which may be associated with the robust discontinuity in theinteratomic likely. The issue has been answered by two independentsimulations ,whichclearlyindicatethatC1,andPoisson’sratioarealwayspositive. Itappearsthatthe second-orderDFTusedbyJaneandMohantyandJones,essentiallyusesafullyisotropicandhomogeneousresponsefunctionforthecrystal.The elasticcoefficientC1,whichmeasurestheanisotropyofthecrystalresponsefunction, maynot be wellrepresentedby thesecond-ordertheory and, thus, unphysicalestimatesmaybe attained. Thisproblemcouldbe corrected, atleastpartially,ifthethird-ordertermswere involved.  Usingthefree-energyfunctionalbasedonaneffectiveliquidmedium, VelascoandTarazonaandXu andBausavecalculated~  C2and C44forthe hard-spheresfcccrystal forawide rangeofcrystal density. Theirresultsare in very good agreementwithsimulationestimates .  The photo of aglass as an aperiodiccrystal isan oldoneto whichmanyhavesubscribed. Ruellehasarguedthatthereisnogenera]theoreticalargumentthatthermodynamicallystablestatesmusthave aperiodicdensitydistribution. In fact,the existenceofPenrose’sremarkable aperiodictilings ofthe planebytwodifferentlyshapedtilesshows thatsuch quasicrystalline statesmayindeedbestableifthe constituent particles are properly formed .Nevertheless the problem for the glass challenge iswhethersuch apackingforsimple objectscanbe metastable.StartingwithBernalmanyworkershave constructedlargeregionsofperiodicstructuresthatappeartobe structurallysound. Evidenceforthe linear stability of these[http://www.selleckchem.com/products/bi-d1870.html BI-D1870 selleckchem] a packing to little several-particle displacements can be acquired from aself-consistent phonon theory .Thattheory does not, on the other hand, treatt
+
Content removed

Версия 02:56, 27 декабря 2025

Content removed