Материал из Wiki Mininuniver
Перейти к навигацииПерейти к поиску
|
|
| (не показана 1 промежуточная версия этого же участника) |
| Строка 1: |
Строка 1: |
| − | he liquid point out, in whichparticles are[http://www.selleckchem.com/products/bay80-6946.html BAY80-6946 selleck chemicals], [http://www.selleckchem.com/products/VX-770.html Ivacaftor selleck chemicals] totally free to roam, and the aperiodic on an equivalent footing. This is in which thedensity-functional theoriescanbe handy. Thefree-energyfunctional ofeq. wasminimizedwiththeansatzofeq. forpinwhichaandthepositionofthe latticesitesR1areadjustableparameters. Ivacaftor BAY80-6946 BI-D1870 Thelatticesitesaregivenbythepositionsofparticles inarandomclosepackingobtainedwiththecluster-growthalgorithmbyBennett.The lattice points are peaceful from these details in order to enhance the cost-free energy. Thenearest-neighbourdistance isadjustedsothatthe interiordensityof theclusterisequaltotheuniformdensityofthe process. Aminimu2m~t,eentropietermmorethanbalancestheinteractionterm,sothatthe free of charge energyisfoundduetocompetitionof the entropicandinoteraicntiionuteramts.inFitoertheotPYerct~ana= 0results atphysically acceptabledensities. However, formoreaccuratec~2~undfromasemiempiricalapproachduetoHendersonandGrundkealocalminimumata 0appears. Thisisshownin fig.7.1inwhichweplot thesumoftheideal-gastermwiththeinteraction termas afunctionof aatseveral densities. Ivacaftor BAY80-6946 BI-D1870 There isalways aminimumat a=. At adensityofp”= 1.03theother localminimumappearsat a=287.The relativefree-energyof thetwodifferentstatesisplottedversusdensityin fig.seven.two. ThefrozenlatticebecomesmorestablethantheliquidatPT=one.04.Althoughthis curve implies a initial-get phase changeover, it proved not possible to carry out a Maxwellconstriucetionithrelativefree-energyresults. Singhetat. havealsocalculatedthe stabilityofahypotheticalicosahedralcrystalwhichexistsincuhrevedispiace. Tdheenspiatirfdistrtibeutioansfurnycsttiaolnlinfeorstthitseisisgivenb.y95Saadtoctaseavsluumeoffdeltisafu8n.5c.tionhs.densityatwhichthe freeenergyofthisstatebecomeslowerthanthatoftheliquidis~ = one.135.Thusthe hypotheticalcurved-spacepackingis somewhatmore steady thantheBennettpacking. Thisresultcanbe takentobe the firstevidence forthe stabilityofanicosahedral crystal. Becausethecalculationhasbeendoneforaparticularaperiodiclattice,thetheory doesnotruleoutthepossibilityof theexistenceofother aperiodicstructures. Eachstructuremaycorrespondtoitsownminimuminfreeenergy.Withoutsymmetry,nevertheless,thecompletesearchforfree-energyminimais produced challenging. Dynamics inthe glass point out involves activated jumps among various aperiodicfree-vitality minima. HallandWolyneshaverecentlyproposedan approximatemethodtodeterminethefree-energybarriersinanamorphoussystemusingthestationarypointsofthefree-energyfunctionals. Appealing- V.Singh,Density-functionaltheoryoffreezingandpropertiesoftheorderedphase 401ly, thepropertiesare dependentonthe overlapfunctionsofthe positionsofnearbyminima, similartothietributionofdistancesbetweenminimaleadstoadistributionoffree-energybarriersandhence,get parameters in the duplicate symmetry-breaking theories of spin glasses . Ttheenonexponentialbehaviourisseenin glasses.Theirtheory thusdealswithsome ofthelocalfeaturesofthe dynamics of glasseswhile, atthe sametime, skirtingsome oftheglobal questionsofcomplicatedsequentialorhierarchicaldynamics . In check out ofthe refined point out ofliquid-framework calculations onecanhope toextendthese ideastomore complexsystems, suchas soft-spheres glasses,binary-mixture glassesandglassesmade upof polymeric molecules. Attempts shouldalsobe produced tofindthe relationship betweenthemode-coupling idea whichconsidersthe glass transitiontobe “dynamic” andthe density-functionaltheory described earlier mentioned . Theterm quasicrystalisshortforthe quasiperiodiccrystal. Itdescribesanewclass ofincommensu-amount crystal buildings which have 6-functions in their Fourier remodel butwhich have pointsymmetriesincompatible with periodic order. Thefirst quasicrystal was discoveredin1984 byShechmanet al. in speedily solidifiedaluminium-basedAl-14wt%Mnalloy.Thematerial exhibitedanelectrondiffractionpatternwithapparentlysharpspots,which include things like 5-fold symmetry axes. The sharpness of the diffractionpeaks indicates long-rangetranslationalorder, as in aperiodic crystal, butfive-foldaxesare incompatiblewithperiodicity. Thisdiscoverystimulatedalargeamountoftheoreticalandexperimentalwork.Therearenowseveralknown classes of quasicrystalswith varied compositions. The diffraction pattern of these materialsappears to be associated to some intriguing tessellations of room originally found by Penroseandexplored in amorephysical context byMcKay. LandautheorieswhichdescribetheformationofquasicrystalsatequilibriumhavebeengivenbyBakandbyMerminandTraianaMonteCarlosimulationbyWidom eta!. indicatesthatquasicrystals can exist atequilibrium. On the other hand, inthe laboratory quasicrystals are formedby somequenchingprocess. Fortheinputdata usedbySaehdevandNelson,thebeeandfcccrystalshavestableminimainthe vertex product, whilethe edgemodel ofthe icosahedral crystal created alocalminimumwithanenergyhigher thanthe liquid. The most stablephasewas foundtobethefeefollowedbythe bceandthe icosahedral vertexmodel. [http://www.selleckchem.com/products/bi-d1870.html BI-D1870 selleckchem]Unlikethe traditional periodiccrystals, the icosahedral crystalshaveBraggpeaks atarbitrarilysmall wave
| + | Content removed |
Текущая версия на 03:03, 27 декабря 2025