Материал из Wiki Mininuniver
Перейти к навигацииПерейти к поиску
|
|
| (не показана 1 промежуточная версия этого же участника) |
| Строка 1: |
Строка 1: |
| − | he liquid condition, in whichparticles are[http://www.selleckchem.com/products/VX-770.html selleck], [http://www.selleckchem.com/products/bay80-6946.html selleck chemicals] totally free to roam, and the aperiodic on an equivalent footing. This is the place thedensity-useful theoriescanbe helpful. Thefree-energyfunctional ofeq. wasminimizedwiththeansatzofeq. forpinwhichaandthepositionofthe latticesitesR1areadjustableparameters. Ivacaftor BAY80-6946 BI-D1870 Thelatticesitesaregivenbythepositionsofparticles inarandomclosepackingobtainedwiththecluster-growthalgorithmbyBennett.The lattice details are calm from these factors in buy to optimize the absolutely free energy. Thenearest-neighbourdistance isadjustedsothatthe interiordensityof theclusterisequaltotheuniformdensityofthe system. Aminimu2m~t,eentropietermmorethanbalancestheinteractionterm,sothatthe free energyisfoundduetocompetitionof the entropicandinoteraicntiionuteramts.inFitoertheotPYerct~ana= 0results atphysically acceptabledensities. However, formoreaccuratec~two~undfromasemiempiricalapproachduetoHendersonandGrundkealocalminimumata 0appears. Thisisshownin fig.seven.1inwhichweplot thesumoftheideal-gastermwiththeinteraction termas afunctionof aatseveral densities. Ivacaftor BAY80-6946 BI-D1870 There isalways aminimumat a=. At adensityofp”= one.03theother localminimumappearsat a=287.The relativefree-energyof thetwodifferentstatesisplottedversusdensityin fig.7.two. ThefrozenlatticebecomesmorestablethantheliquidatPT=one.04.Althoughthis curve suggests a first-order section transition, it proved extremely hard to have out a Maxwellconstriucetionithrelativefree-energyresults. Singhetat. havealsocalculatedthe stabilityofahypotheticalicosahedralcrystalwhichexistsincuhrevedispiace. Tdheenspiatirfdistrtibeutioansfurnycsttiaolnlinfeorstthitseisisgivenb.y95Saadtoctaseavsluumeoffdeltisafu8n.5c.tionhs.densityatwhichthe freeenergyofthisstatebecomeslowerthanthatoftheliquidis~ = 1.a hundred thirty five.Thusthe hypotheticalcurved-spacepackingis somewhatmore secure thantheBennettpacking. Thisresultcanbe takentobe the firstevidence forthe stabilityofanicosahedral crystal. Becausethecalculationhasbeendoneforaparticularaperiodiclattice,thetheory doesnotruleoutthepossibilityof theexistenceofother aperiodicstructures. Eachstructuremaycorrespondtoitsownminimuminfreeenergy.Withoutsymmetry,nevertheless,thecompletesearchforfree-energyminimais designed difficult. Dynamics inthe glass state requires activated jumps involving different aperiodicfree-electricity minima. HallandWolyneshaverecentlyproposedan approximatemethodtodeterminethefree-energybarriersinanamorphoussystemusingthestationarypointsofthefree-energyfunctionals. Exciting- V.Singh,Density-functionaltheoryoffreezingandpropertiesoftheorderedphase 401ly, thepropertiesare dependentonthe overlapfunctionsofthe positionsofnearbyminima, similartothietributionofdistancesbetweenminimaleadstoadistributionoffree-energybarriersandhence,order parameters in the duplicate symmetry-breaking theories of spin eyeglasses . Ttheenonexponentialbehaviourisseenin glasses.Theirtheory thusdealswithsome ofthelocalfeaturesofthe dynamics of glasseswhile, atthe sametime, skirtingsome oftheglobal questionsofcomplicatedsequentialorhierarchicaldynamics . In look at ofthe sophisticated point out ofliquid-composition calculations onecanhope toextendthese ideastomore complexsystems, suchas delicate-spheres eyeglasses,binary-mixture glassesandglassesmade upof polymeric molecules. Attempts shouldalsobe produced tofindthe connection betweenthemode-coupling principle whichconsidersthe glass transitiontobe “dynamic” andthe density-functionaltheory described earlier mentioned . Theterm quasicrystalisshortforthe quasiperiodiccrystal. Itdescribesanewclass ofincommensu-charge crystal constructions which have six-capabilities in their Fourier remodel butwhich have pointsymmetriesincompatible with periodic buy. Thefirst quasicrystal was discoveredin1984 byShechmanet al. in swiftly solidifiedaluminium-basedAl-14wt%Mnalloy.Thematerial exhibitedanelectrondiffractionpatternwithapparentlysharpspots,which incorporate five-fold symmetry axes. The sharpness of the diffractionpeaks implies extended-rangetranslationalorder, as in aperiodic crystal, butfive-foldaxesare incompatiblewithperiodicity. Thisdiscoverystimulatedalargeamountoftheoreticalandexperimentalwork.Therearenowseveralknown courses of quasicrystalswith diverse compositions. The diffraction sample of these materialsappears to be relevant to some interesting tessellations of place originally identified by Penroseandexplored in amorephysical context byMcKay. LandautheorieswhichdescribetheformationofquasicrystalsatequilibriumhavebeengivenbyBakandbyMerminandTraianaMonteCarlosimulationbyWidom eta!. indicatesthatquasicrystals can exist atequilibrium. Nonetheless, inthe laboratory quasicrystals are formedby somequenchingprocess. Fortheinputdata usedbySaehdevandNelson,thebeeandfcccrystalshavestableminimainthe vertex design, whilethe edgemodel ofthe icosahedral crystal produced alocalminimumwithanenergyhigher thanthe liquid. The most stablephasewas foundtobethefeefollowedbythe bceandthe icosahedral vertexmodel. [http://www.selleckchem.com/products/bi-d1870.html selleckchem]Unlikethe regular periodiccrystals, the icosahedral crystalshaveBraggpeaks atarbitrarilysmall wave
| + | Content removed |
Текущая версия на 03:02, 27 декабря 2025