Результаты исследовательской деятельности группы "Маркетологи" в проекте Системы нейтрализации отработавших газов в системе ДВС — различия между версиями

Материал из НГПУ им. К.Минина
Перейти к: навигация, поиск
(Результаты исследования)
(Результаты исследования)
Строка 22: Строка 22:
  
 
Выпускная система современных автомобилей включает '''каталитический нейтрализатор'''. Каталитический нейтрализатор (обиходное название – катализатор) предназначен для снижения выброса вредных веществ в атмосферу с отработавшими газами.
 
Выпускная система современных автомобилей включает '''каталитический нейтрализатор'''. Каталитический нейтрализатор (обиходное название – катализатор) предназначен для снижения выброса вредных веществ в атмосферу с отработавшими газами.
 
 
Каталитический нейтрализатор применяется как на бензиновых, так и на дизельных двигателях. Нейтрализатор обычно устанавливается непосредственно за выпускным коллектором или перед глушителем.
 
Каталитический нейтрализатор применяется как на бензиновых, так и на дизельных двигателях. Нейтрализатор обычно устанавливается непосредственно за выпускным коллектором или перед глушителем.
 
 
Каталитический нейтрализатор имеет следующее устройство:
 
Каталитический нейтрализатор имеет следующее устройство:
 
 
блок-носитель;
 
блок-носитель;
 
теплоизоляция;
 
теплоизоляция;
 
корпус.
 
корпус.
 
 
Основным элементом каталитического нейтрализатора является блок-носитель, который служит основанием для катализаторов. Блок-носитель изготавливается из специальной огнеупорной керамики. Конструктивно блок-носитель состоит из множества продольных сот-ячеек, которые значительно увеличивают площадь соприкосновения с отработавшими газами.
 
Основным элементом каталитического нейтрализатора является блок-носитель, который служит основанием для катализаторов. Блок-носитель изготавливается из специальной огнеупорной керамики. Конструктивно блок-носитель состоит из множества продольных сот-ячеек, которые значительно увеличивают площадь соприкосновения с отработавшими газами.
 
 
На поверхность сот-ячеек тонким слоем наносятся вещества-катализаторы. В качестве таких веществ используются платина, палладий и родий. Катализаторы ускоряют протекание химических реакций в нейтрализаторе.
 
На поверхность сот-ячеек тонким слоем наносятся вещества-катализаторы. В качестве таких веществ используются платина, палладий и родий. Катализаторы ускоряют протекание химических реакций в нейтрализаторе.
 
 
Платина и палладий относятся к окислительным катализаторам. Они способствуют окислению несгоревших углеводородов (СН) в водяной пар, оксида углерода (угарный газ, СО) в углекислый газ.
 
Платина и палладий относятся к окислительным катализаторам. Они способствуют окислению несгоревших углеводородов (СН) в водяной пар, оксида углерода (угарный газ, СО) в углекислый газ.
  
 
Родий является восстановительным катализатором. Он восстанавливает оксиды азота (NOx) в безвредный азот.
 
Родий является восстановительным катализатором. Он восстанавливает оксиды азота (NOx) в безвредный азот.
 
 
Таким образом, три катализатора снижают содержание в отработавших газах трех вредных веществ. Такой нейтрализатор называется трехкомпонентным каталитическим нейтрализатором.
 
Таким образом, три катализатора снижают содержание в отработавших газах трех вредных веществ. Такой нейтрализатор называется трехкомпонентным каталитическим нейтрализатором.
 
 
Блок-носитель помещается в металлический корпус. Между ними обычно располагается слой теплоизоляции. В корпусе нейтрализатора устанавливается кислородный датчик.
 
Блок-носитель помещается в металлический корпус. Между ними обычно располагается слой теплоизоляции. В корпусе нейтрализатора устанавливается кислородный датчик.
 
 
Условием эффективной работы каталитического нейтрализатора является температура 300°С. При такой температуре задерживается порядка 90% вредных веществ. С целью быстрого прогрева нейтрализатора при запуске двигателя осуществляются следующие мероприятия:
 
Условием эффективной работы каталитического нейтрализатора является температура 300°С. При такой температуре задерживается порядка 90% вредных веществ. С целью быстрого прогрева нейтрализатора при запуске двигателя осуществляются следующие мероприятия:
 
 
установка нейтрализатора непосредственно за выпускным коллектором;
 
установка нейтрализатора непосредственно за выпускным коллектором;
 
повышение температуры выхлопных газов за счет обогащения топливно-воздушной смеси
 
повышение температуры выхлопных газов за счет обогащения топливно-воздушной смеси

Версия 19:40, 24 декабря 2012

Авторы и участники проекта

Студенты 1-3 курсов

Тема исследования группы

Виды нейтрализаторов в выпускной системе ДВС

Проблемный вопрос (вопрос для исследования)

Какие существуют виды нейтрализаторов в выпускной системе ДВС?

Гипотеза исследования

Мы предполагаем, что существует несколько видов нейтрализаторов в выпускной системе ДВС

Цели исследования

Осуществить поиск видов нейтрализаторов в выпускной системе ДВС

Результаты исследования

Выпускная система современных автомобилей включает каталитический нейтрализатор. Каталитический нейтрализатор (обиходное название – катализатор) предназначен для снижения выброса вредных веществ в атмосферу с отработавшими газами. Каталитический нейтрализатор применяется как на бензиновых, так и на дизельных двигателях. Нейтрализатор обычно устанавливается непосредственно за выпускным коллектором или перед глушителем. Каталитический нейтрализатор имеет следующее устройство: блок-носитель; теплоизоляция; корпус. Основным элементом каталитического нейтрализатора является блок-носитель, который служит основанием для катализаторов. Блок-носитель изготавливается из специальной огнеупорной керамики. Конструктивно блок-носитель состоит из множества продольных сот-ячеек, которые значительно увеличивают площадь соприкосновения с отработавшими газами. На поверхность сот-ячеек тонким слоем наносятся вещества-катализаторы. В качестве таких веществ используются платина, палладий и родий. Катализаторы ускоряют протекание химических реакций в нейтрализаторе. Платина и палладий относятся к окислительным катализаторам. Они способствуют окислению несгоревших углеводородов (СН) в водяной пар, оксида углерода (угарный газ, СО) в углекислый газ.

Родий является восстановительным катализатором. Он восстанавливает оксиды азота (NOx) в безвредный азот. Таким образом, три катализатора снижают содержание в отработавших газах трех вредных веществ. Такой нейтрализатор называется трехкомпонентным каталитическим нейтрализатором. Блок-носитель помещается в металлический корпус. Между ними обычно располагается слой теплоизоляции. В корпусе нейтрализатора устанавливается кислородный датчик. Условием эффективной работы каталитического нейтрализатора является температура 300°С. При такой температуре задерживается порядка 90% вредных веществ. С целью быстрого прогрева нейтрализатора при запуске двигателя осуществляются следующие мероприятия: установка нейтрализатора непосредственно за выпускным коллектором; повышение температуры выхлопных газов за счет обогащения топливно-воздушной смеси

 Плазменный нейтрализатор

Один из альтернативных методов нейтрализации отработавших газов – использование низкотемпературной плазмы. Исследования в Японии, США и в... России привели к созданию экспериментальных образцов оборудования, ос­нованного на плазменных технологиях. Что такое низкотемпературная плазма? Она состоит из положительно заряженных ионов и отрицательно заряженных электронов, получен­ных в специальных устройствах при различных видах импульсных высоковольтных электрических разрядов (коронный, барьерный и др.), а также из нейтральных атомов и молекул.

Оно включает узел подвода отработавшего газа и масла , кварцевую стеклянную или керамиче­скую трубку , используемую в качестве ди­электрического барьера, и два электрода – центральный и внешний – в виде металличе­ской сетки из нержавеющей стали. В разрядное устройство подается ток от источника, форми­рующего импульс напряжения длительностью 250–350 мкс. Барьерный разряд возникает при элек­трическом напряжении 0,5–35 кВ и частоте сле­дования импульсов 50–2000 Гц. Как происходит процесс нейтрализации га­зов в системе и очистка их от сажи? Отрабо­тавшие газы дизеля направляются в плазмохими­ческий реактор, предварительно пройдя сушку во влагоотделителе. В плазмохимическом реак­торе к этим газам "подмешивают" масло. Под действием электриче­ского разряда в трубках разрядного устройства частички сажи ак­тивно абсорбируют масло на своей поверхности. Для удаления сажи, частички которой находятся как бы в масляном коконе, используется маслоотделитель. Сажа собирается в специальный контейнер, а масло после дополнительной очистки в фильтре продолжает циркулировать по замкнутому контуру. Таким образом, удается обеспечить очень высо­кую эффективность поглощения частичек сажи – до 100% во всем диа­пазоне оборотов дизеля. Из маслоотделителя часть отработавших га­зов можно направить во впускной коллектор дизеля (рециркуляция). Это снижает содержание оксидов азота в выхлопе. Физическая и химическая сущность явлений, происходящих под действием барьерного разряда в плазмохимическом реакторе, изучена пока недостаточно. Однако упрощенно процесс можно представить сле­дующим образом. При подаче напряжения в электроразрядное устрой­ство в нем создается неравновесная слабоионизированная низкотемпе­ратурная плазма, которая воздействует на отработавшие газы. В ре­зультате многостадийных химических реакций оксиды азота, серы и углерода разлагаются на нетоксичные молекулы кислорода, азота, серы и углерода. Одновременно происходит конверсия (превращение) оксида азота в его диоксид, который связывается радикалом ОН в азотную кислоту в виде аэрозоля. Аналогичные реакции протекают с диоксидом серы и оксидом углерода, приводя к образованию аэрозо­лей. Аэрозоли улавливают в достаточно простых электрофильтрах, обеспечивающих степень очистки до 98–99%. Судя по лаконичным сообщениям зарубежной печати, в Японии про­ходит испытания микроавтобус, на котором установлен дизельный дви­гатель "Ниссан-LD 20" мощностью 48,5 кВт/66 л. с., оборудованный нейтрализатором с плазмохимическим реактором. По предварительным расчетам, плазменная очистка обойдется в 1,5–2 раза дешевле, чем в существующих многокомпонентных устройст­вах. Не требуется использовать благородные металлы, значительно увеличивается ресурс систем нейтрализации, сокращается время на их техническое обслуживание. Однако к промышленному выпуску плазмохи­мических реакторов (а значит, их широкому использованию) можно бу­дет перейти, когда удастся сократить затраты мощности на электро­питание реактора. В опытных и экспериментальных системах они дос­тигают 4–5% и более от мощности дизеля.

Вывод

Полезные ресурсы

Другие документы